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ABSTRACT

Wildfires continue to pose a long-standing threat in our society. In this thesis, I de-

rive and solve a fluid dynamics model to study a specific type of wildfire, namely, a

two-dimensional flow around a rising plume above a concentrated heat source mod-

eling a fire line. This flow assumes a narrow plume of hot gas rising and entraining

the surrounding air. The surrounding air is assumed to have constant density and

is irrotational far from the fire line. The flow outside the plume is described by a

Biot-Savart integral with jump conditions across the position of the plume. The

plume model describes the unsteady evolution of the mass, momentum, energy, and

vorticity inside the plume, with sources derived to model mixing in the style of

Morton et al. [55].

The fire in the above plume model is taken to be a stationary point source

fire with properties calculated from the fire model. The effects of fire dynamics are

modeled using a control volume derivation to write equations for total density, fuel

density, oxygen density, and energy. This fire model allows the fire to propagate,

where the plume and fire models are coupled through the point source fire and

ambient air flow, allowing for a feedback mechanism between the two models. The

derivation and implementation of the fire model are extended to investigate the

situations of slope driven fires. The results show that the models presented in

this thesis are capable of capturing the complex dynamics present in a wildfire.

Specifically, the models address the complex interaction of the fire and fire plume

with the surrounding air, fuel layer, and topography.
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CHAPTER 1

Introduction

1.1 Introduction

Fire is a phenomenon that has likely mesmerized people since it was discovered

thousands of years ago. Fire has also influenced, or been used in such inventions

as the light bulb, steam power, and several other household items most of us take

for granted. Unfortunately, many people also discover the true power of fires when

they burn out of control. Houses, buildings, and even historic cities (The Great

Chicago Fire [60, 62]) have been reduced to a pile of ashes in a fraction of the time

it took to build them. Unfortunately, the advance of technology is a double-edged

sword; buildings have been made safer and the safety of all people involved on a fire

scene remains the top priority, but technology has also changed the fuel that is most

commonly involved in fires. What were once rooms full of wood and organic matter

are now rooms full of plastics and man-made products. These “new” materials carry

several times the energy density that the “old” materials possessed [7, 33, 35] and in

turn, make the fires faster, stronger, and more deadly [24, 36, 41]. Firefighters have

had to adopt new techniques for fighting the fires [33, 68], as well as new technology

to keep themselves, and the tools they use, safe [12, 16, 22, 27, 37]. While it appears

that these advances are specific to commercial and residential use, the technology

that has been developed for these fires can be used for fighting wildfires as well.

Most people are familiar with the common natural disasters (hurricanes, tor-

nadoes, mudslides, earthquakes, etc.), but few people really consider fire as a natural

disaster. Most wildfires are a natural disaster that many people overlook, or do not

think about until one “hits home;” however, if you ask anyone who lives in a high

risk area, they certainly know what the risks are. These extremely powerful forces of

nature have the ability to devastate large areas with huge amounts of heat, smoke,

and flame. The high risk of these fires breaking out over the years has prompted the

media to become heavily involved in publicizing the issues and hardships associated

with these disasters. One such example is the television personality Smokey the

1
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Bear and his “Only You can Prevent Wildfires” campaign. Aside from cartoons ad-

vising children to be more cautious, national news media have been covering stories

of large wildfires that impact broad areas and a huge number of people. Ascribing

a cause to these massive blazes is difficult since many variables contribute to fires.

Most of the time, drought conditions contribute in some way. These dry conditions

await an ignition event, which could be a careless act involving a spark or fire, a

stray lightning strike, or arson.

Once these fires start, no matter the cause, if they are not contained right

away, they become extremely difficult to control once they spread. Unfortunately,

wildfires have the amazing ability to spread at rapid speeds and jump the gaps of

roads, rivers, and firefighting efforts. From the view of firefighters, many variables

influence the propagation of the fire and these variables are out of their control.

These variables are often factors that aid in the spread of the fire and sometimes

halt all firefighting efforts. One important factor is the weather, whether it be heat,

wind, rain, or drought. Weather can change within seconds, which means the fire

can change directions and behavior just as quickly. Indeed, these factors can be

something as simple as the topography of the land. Inclines coupled with wind in

the correct direction can greatly increase the speed at which the fire moves and the

size of the area affected [17, 20, 39, 43, 48].

Fire only exists in the presence of the fire tetrahedron: fuel, oxygen, heat, and

chemical chain reaction. Without one piece of the tetrahedron, the fire will be ex-

tinguished; firefighters use this fact when formulating a plan of attack to extinguish

the fire. Solid fuel is converted to gas fuel using large amounts of heat through

the chemical process pyrolysis [30, 42]. Wildfires transfer this heat energy through

conduction, convection, radiation, and the transport of embers.

Wildfires cannot, and should not be completely prevented; in fact, certain

types of fires are instrumental in renewal of plant life. Small controlled wildfires are

often used to clear underbrush, reducing the size of the fuel layer, and promote the

growth of new plants, especially in national parks. The chemical processes involved

in fire release carbon dioxide and ash, which are nutrients that help plants grow

[3]. In addition to plant growth, wildfires can also be used to control the advance
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of insects and plant disease. Wildfires do have helpful uses, but once the fires get

out of control, these benefits are far outweighed by the devastating damage. Many

times, these fires have gotten out of hand, resulting in the burning of large areas of

land. In essence, stopping all fires, large or small, could be adding fuel to the fire,

literally. Suppressing fires allows underbrush to build up in areas, increasing the

fuel bed for future fires. After such buildups, fires can grow in size and cost, and

become more dangerous.

When all factors involved in a wildfire are considered, fighting these fires

sounds hopeless. When a blaze burns out of control, the effects are long reach-

ing. Not only are woods and animal habitats in peril, but homes and lives of people

living in the area are also affected. The fires cause unimaginable amounts of damage,

not only monetary, but emotional, societal, and environmental as well. This would

include the natural resources that are lost in fires, and cultural resources (historical

buildings, etc.) as well. An example of decisions that may impact such resources

would be deciding to divert a fire away from a structure. This decision could end

up costing natural and cultural resources worth more than the structure itself, just

like stopping a fire today will result in higher fuel loads and a larger fire tomorrow.

In addition to damage, the cost of maintaining equipment and personnel and the

actual effort to suppress the wildfire costs several billion dollars annually [32, 71, 75].

This cost is born by taxpayers, not only in high risk areas, but all over the country.

Wildfires are an issue not only in the United States, but around the world;

several of the articles used here as references highlight global studies. Fires have

been known to occur on all continents except for Antarctica, so accurate insight into

the inner workings of wildfires could benefit people around the world. Specifically

here in the United States, impacts of wildfires can be seen in both direct and indirect

economic costs.

Every fire has its own personality, drastically affecting the amount of money

associated with each event. It needs to be noted that the costs discussed in the

financial responsibility reports (reviewed in the following paragraphs) [5, 18, 71] do

not include the cost of devastation and damage in the areas affected, not to mention

the emotional toll, loss of business to the area, and loss of natural resources. If these
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types of damages were able to have an associated dollar amount, the overall figures

discussed in these cost reviews would be much higher than reported.

Most costs reviewed and reported here are federal costs. In today’s bureau-

cratic world, jurisdiction is a large issue, especially when it comes time to split the

costs to each participating level of government. The cost analysis presented here

outlines the federal spending for the large fires in which federal resources were part

of the suppression effort. As mandated by Congress, an independent panel is re-

quired to review the costs and decisions leading to the costs for all wildfires with

federal suppression cost exceeding ten million dollars to determine if the US Forest

Service made the most cost effective decisions during the incident. Two of the costs

analysis papers reviewed here are reports from this independent panel review from

2008 and 2009 [5, 18], and the last is a full USDA Forest Service report for 2010

[71].

In 2008, twenty-two fires were reviewed [18]; as mandated, each individual fire

cost over ten million dollars in federal suppression costs. Not surprisingly, most

fires were located on the west coast or in the central portion of the United States.

The federal suppression costs of these twenty-two fires was six hundred eighty-three

million dollars, which topped the five hundred forty-eight million dollars used to

suppress the fires reviewed in 2007. Although, the number of acres burned and

number of fires was less in 2008 when compared to 2007. In 2008, one fire alone

cost over one hundred twenty million dollars and burned for almost 100 days. The

cost of suppression in 2008 was the largest federal cost total since the reviews were

mandated by Congress in 2004. The large fires reviewed account for twenty percent

of the acres burned but thirty-eight percent of the cost, enforcing the fact that the

largest fire is not necessarily the most expensive. Even more proof of this is the fact

that the largest fire in 2008 occurred in Texas and cost less than ten million dollars

in suppression costs. In 2008 there were seventy-eight thousand fires reported, and

these fires burned a total of 5.3 million acres. In the short term trends between

2007 and 2008, the amount of fires and the total acres burned is decreasing, but

the number of fires with federal suppression costs exceeding ten million dollars is

increasing.
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In 2009, six large fires were reviewed in the report [5]. The total suppression

costs of all fires was about one hundred ninety million dollars. The cost, acreage

burned and duration widely varied depending on the different factors discussed

below. As with previous trends in 2008, many large fires occurred on the west

coast of the United States, resulting in much of the data being collected from this

geographical area. In 2010, there were almost seven thousand wildfires reported to

the USDA Forest Service (in total, not just those costing over ten million dollars in

suppression costs) [71], which burned about three hundred twenty thousand acres

and cost nine hundred million dollars in suppression costs. There were more acres

burned in 2010, but the number of fires reported was fewer as compared to 2009.

To get an idea of the amount of money available for use towards suppression

costs, in 2010 the US forest service was funded by the Departments of Interior,

Environment and the Related Agencies Appropriations Act which provided over $2.1

billion in funding. There was also a reserve fund provided by the appropriations bill

for $413 million. This money is used for the challenges of budgeting fire suppression

and to allow the quick response during fire seasons. All together the US Forest

Service had $2.5 billion at their disposal during 2010 [71].

There are two different types of costs associated with a cost analysis of a given

fire considered in the large fire cost analysis papers reviewed here [5]. Direct costs

for example, are the costs accrued by transporting personnel, aircraft, and equip-

ment to fight the fire. Indirect costs for example, would be the costs accrued by

transporting personnel, supplies, catering, camp crew, etc. which support the fire-

fighting operation. This includes the cost of all living necessities for the sometimes

large number of people involved in the operation, and the incident command itself.

On average for large fires, the percentage of direct costs is about sixty-eight percent,

and the percentage of indirect costs is thirty-two percent [5]. The costs listed above

for yearly totals include both indirect and direct costs.

When considering individual fires, the cost is highly dependent on the person-

ality of the fire, the weather, the strategy employed by the incident commander, the

terrain, the type of fuel, the resources available to fight the fire, jurisdiction issues,

private property obstacles, public pressure, etc. Firefighter safety is the top priority
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when on a fire scene. Unfortunately, this necessary priority carries a heavy cost

burden. Decisions need to be made differently when considering the people who risk

their lives to put the fire out. For example, it may be deemed unsafe for firefighting

efforts to continue due to any of the factors listed above. A possible outcome of the

suspension of such efforts could result in the growth of the fire, and in the long run,

a higher cost to regain the lost progress.

Making firefighter safety the highest priority on a fire ground has had a large

impact on line of duty deaths. In 2010 wildfire firefighter fatalities has decreased

from the numbers in 2009. The largest cause of fatalities continues to be aviation

accidents, accounting for twenty of the thirty-two fatalities in a five year period. The

second largest cause of fatalities was burnovers (when firefighters or fire vehicles are

caught in an advancing fire line), which accounted for twenty-two percent of the

total number of fatalities. These two causes combined accounted for over eighty-five

percent of all fatalities in 2010 [71].

Steep slopes and fuel type largely influence how quickly the fire spreads. In

addition to this, thick fuel beds make it extremely difficult to find all hot spots. The

fire could burn within the fuel layer, virtually undetected over large areas, surfacing

in what seems like random areas. This burn pattern is extremely difficult to track

and suppress. Access to the fire line also impacts the actions taken for fighting the

fire. Different equipment needs to be used if ground apparatus cannot be used, and

costs rise steeply when aerial rigs are used. Fires which have a large amount of

smoke visible for large distances are known to cost more, and catch the public’s eye

nationally. With such large fires, media participation only helps to apply pressure

from the community on the incident command to take actions to suppress the fire,

even if it isn’t the action needed. Members of the community are not supportive

when a fire burns for a long time, creating smoke and altering everyday life. Aside

from pressure from the community, political pressures also have a large influence in

actions taken by the incident command.

The public’s perception is that fighting a fire from the air seems like the most

logical method to stop the advancement of a roaring blaze, but contrary to this, it

may not be. The cost of aircraft in firefighting efforts drives up the overall cost of the
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fire more rapidly than any other piece of equipment. Of the fires reviewed in 2008,

fourteen percent of the total cost of suppression was attributed to aviation resources,

although the percentage depends greatly on the role aviation took in suppressing

the fire [18]. Additionally, the effectiveness per cost of the equipment is disputed by

people in charge of the operations, even during today’s fires. There have been cases

where incident commanders have ordered the use of aircraft to fight the fire solely

on demand from the public, even though it was known there would be no positive

effect from the operation [5]. This was done because the aircraft is widely assumed

to be the most effective means of fighting wildfires, and keeping the public outlook

positive was most important at the time. An example of this political pressure has

taken place in the Los Angeles Basin. Due to the large number of people in the

area, and several media outlets, the fires drew significant public attention. This

attention places pressure on the people in charge, and causes them to make fiscally

irresponsible decisions, including the use of aerially delivered flame retardant when

it is known that there will be little to no effect [5]. In other areas this has occurred

to the point that aerial operations were conducted just so that it could be filmed

and shown on television to keep public outlook favorable, even though the people

in charge knew little, if any, of the material dropped would reach the ground [18].

This is not always the case, and in some fires, the use of aircraft has been pivotal

in some suppression efforts.

Despite the high risk of fire, residents continue to build homes in the wildland-

urban interface (WUI). This greatly impacts the decisions that need to be made

during fire incidents. There are many more factors that need to be considered when

dealing with fires in the WUI, and delegation of resources becomes more and more

complicated. The presence of buildings in the area of a fire commits people and

apparatus to protect these buildings, taking away from forming a fire line; this

is called structure protection [5, 18, 71]. In areas that are prone to many fires,

taking away resources from stopping the fire to protecting houses may allow the

fire to spread, and eventually burn longer and in a larger area. In the long-term,

the overall cost of suppressing the fire would increase. This might explain why

suppression costs in California are much higher than other locations around the
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country. In California, the fires occur in areas that are more urban, thus making

the fire far more complex. There are more buildings that need to be accounted

for, and worried about. Coupling this complex behavior with high fuel loads, the

situation and costs can get out of control very quickly.

Residential and commercial firefighting often lend hands to wildfire techniques.

One example of this is the use of infrared cameras, both handheld [27] and mounted

to aircraft [5]. This helps find fire spots within fuel layers not easily seen from the

ground and without the thermal camera. In one instance aircraft mounted infrared

cameras were used to aid firefighters on the ground in navigating through thick

smoke [5]. It allowed a clear view of the fire front, and even provided visibility to

the aircraft, allowing firefighting efforts to continue.

Over the past two decades, there has been a dramatic increase in extreme

behavior of the wildfires, the risk to firefighters, loss of property and homes, and

cost. This type of trend calls for a more strategic response to address the rising

challenges to fighting the fires. A strategy for fighting fires depends greatly on

the landscape, local topography, and other factors listed above. Attempting to

devise a global strategy is difficult, because each area has its own climate, fuel

characteristics, and weather patterns. A localized strategy should also be able to

engage the community, work with its members, and make the overall area more

resistant to future fires [71]. This community involvement may include on site

twenty-four hour information centers to ease public pressure, or even public service

announcements like Smokey the Bear.

The Smokey the Bear campaign has been around for many years. In 2009,

the campaign received more than fifty-four million dollars, and in just the first half

of 2010, it received over twenty-one million dollars [71]. This shows the support

and positive results the public service announcement has obtained over the past

years. Overall, an adaptive strategy should consider the individual pieces of the

fire management, especially the response and bureaucratic policy, minimizing the

political red tape allowing for an efficient response and suppression.

Considering all aspects of fires, factors influencing their behavior, and trends

in the past years, it is no surprise that large fires have been getting more complex
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and dangerous. Although, with careful planning and training, the people in charge

can make fiscally responsible decisions, helping to reduce the cost of suppressing the

fires.

Kaval [32] surveyed people in high risk areas as to how they perceived a threat

of wildfires burning their property. Surprisingly, most participants accurately iden-

tified the threat. Another question in the study explored the option of paying addi-

tional money to help reduce the risk of wildfires in their area. The results show that

residents were willing to pay some amount to help prevent the wildfires. Kaval pro-

poses one way to reduce the risk of wildfires is to thin fuels by removing underbrush

and small vegetation creating an area called a defensive zone [48]. By understanding

more about how wildfires work, through modeling, other methods can be developed

to reduce the risk. This understanding could spur better preventative measures and

predictive models.

Modeling wildfires can benefit many different people, from the residents in the

area, to the firefighters who risk their lives trying to get the fires under control.

Predictive models can be used to create early warning systems to give residents in

high risk areas the chance to evacuate when a wildfire does occur. In addition to

early warning systems, predictive models can be used to assist in firefighting efforts.

The aid of predictive models can give firefighters the opportunity to modify their

techniques to become more efficient and even allow them to develop new methods.

It is apparent that fighting normal fires is dangerous, so any insight into making

firefighting efforts more efficient will likely save lives. To understand the complex

mechanisms that cause the fire plume to rise and entrain ambient air, models need

to account for the fire plume itself and its interaction with the surrounding area.

In this thesis, I present and analyze a model of wildfires that is based on

breaking the problem down into core components; these parts consist of a fire, the

fire plume, and the surrounding atmosphere. The hope is that this simplified model

requires less computational cost while still allowing for an accurate understanding

of the interactions between the plume, the fire, and the ambient air. The model will

include ideas and equations used to describe a flag flapping in the wind [1], creating

a novel model that allows for a plume to react more accurately to external forces.
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This approach will be discussed more in Section 1.4. Applications of this model

will be used to analyze the interactions between the atmosphere, propagation of fire

through different media, and fires effected by topography.

1.2 Previous Works–Plume and Plume Propagation

Several agencies have made significant efforts in modeling wildfires, includ-

ing the National Institute of Standards and Technology (NIST), the Department of

Agriculture Forestry Service (USDA), and the Department of Energy (DOE). The

following sections will review several categories of papers which take different ap-

proaches to modeling fire, whether it is wildfires or not. These categories include

systems obtained by the reduction of the Navier-Stokes equations, fully physical

solution methods, some using Lagrangian particles, and reactive plume models.

1.2.1 Techniques Involving Reduction of the Navier-Stokes Equations

The Navier-Stokes equations are an extremely versatile set of equations that

can describe the motion of any fluid flow given the right conditions. In essence,

all models reviewed here were derived from the Navier-Stokes equations, or equiva-

lently, conservation laws. Several assumptions can be made depending on the type

of flow being studied. Rehm and Baum [63] make an assumption about the rate at

which heat is added to the system of a thermally driven plume, while Morton et al.

[55] assume a very specific form of velocity and buoyancy force. In contrast, Riahi

[64] uses multiple axisymmetric plumes in the numerical domain. These assump-

tions, while very different and applied in different types of systems, help to reduce

the difficult non-linear Navier-Stokes equations down to a more manageable set of

equations that can be easily solved numerically. Several more papers are reviewed

in [28], where the core equations are derived from the conservation laws.

Morton et al. [55] use the Navier-Stokes equations to explore the interactions

of heated bodies with ambient air. The particular interest involves the fluid velocity

and temperature in close proximity to heat sources. Unlike previous works, Morton

et al. discuss the effects of a thermally buoyant plume rising though a thermally

stratified atmosphere. Verified by experiments, Morton et al. make the assumption
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that the rate of entrainment at the boundary of the plume is proportional to the

vertical velocity at any given height of the plume. Additionally, the authors make an

assumption that the velocity and buoyancy force, at any given height, have a top-hat

profile. The authors call the type of flow studied in the paper “maintained sources,”

a category under which a fire falls. One large difference in the formulation of the

problem is that they consider a three-dimensional, axisymmetric plume, whereas

here, consideration involves a two-dimensional line fire. Equations concerning the

conservation of momentum, volume, and energy are derived and solved for uniform

fluid under the top-hat profile assumption. In stratified fluid, the plume entrains

cool ambient air, causing it to ultimately stall. As the plume stalls, it spreads out

horizontally creating the familiar shape of a plume. Morton et al. list entrainment

parameters from experiments which will be useful in creating the entrainment model

for this work.

Whereas Morton et al. described heated bodies, Rehm and Baum [63] describe

a system of equations which describe the motion of a thermally driven plume. The

process used is to write the Navier Stokes equations with a heat source term, which

represents the fire. Then, the system of equations is non-dimensionalized and a small

parameter δ, whose magnitude represents heating rate of the system, is introduced.

Here, δ � 1 represents a rapid addition of heat to the system, which is characteristic

in laser applications, and δ � 1 corresponds to slow heat addition to the system,

which is characteristic in controlled fires. Obviously, the interest here is on δ � 1.

The dependent variables are expanded in powers of δ such that there is a balance

between pressure terms and convective terms. Rehm and Baum consider room fires,

and the equations are tailored toward this result. In the scenario described therein,

the pressure in the room builds until a window breaks or a flashover occurs. One

notes that the derivation valid for room fires is not realistic for wildfire, however the

method of perturbation expansions will be adopted for this work.

Riahi [64] takes an approach that uses multiple plumes in the numerical do-

main. Each plume is assumed to be subject to the same conditions and form. The

plumes are assumed to be axisymmetric, circular plumes that rise from a heated

horizontal surface. Raihi uses equations derived from the Navier-Stokes equations



12

in cylindrical coordinates, where convection is time averaged. The equations are

non-dimensionalized and scaled according to asymptotic limits to assure fundamen-

tal balances are maintained. Raihi assumes the Rayleigh number is large, allowing

for an asymptotic expansion of the dependent variables. A two-dimensional assump-

tion is made so that a stream function can be introduced, allowing the calculation

of volume flux. One notes that the Boussinesq approximation is used in conjunction

with the axisymmetric plume. However, while these are valid approximations, they

are not the focus of this work.

1.2.2 Direct Numerical Solutions

The Navier-Stokes equations can be numerically solved directly using a compu-

tational fluid dynamics code (CFD). There are several CFD codes that are commonly

used and one can use different “add-ons” to more fully understand the solution. One

of these “add-ons” is Lagrangian particles or elements that can be used to trace par-

ticle paths. Not only is this a good way to visualize the flow, but it is also a way

to keep track of how much fuel is being consumed and when the fuel is expended.

Baum et al. [14], Baum & McGrattan [13], and Mell et al. [49] use direct numerical

solutions to describe fires with very different characteristics.

NIST has spent a considerable amount of time and resources in developing

several realistic models to predict many different types of fires. Several of the papers

described in this section have been developed by NIST.

An important development is the Fire Dynamics Simulator (FDS) model. An

early version of FDS was reviewed by Ma and Quintiere [40], where several different

types of fires are examined. I will discuss a later version of this model [47] in this

section. It must be understood that results from the model presented in this thesis

will not appear as physically complete as the results from the FDS model. This

is due to the fact that many people over several years have been involved in the

development and improvement of FDS. Particularly visualization of the simulations

from the FDS model are complex, and there are several sub-models used in the FDS

model to account for physical phenomenon and visualizations alone.

Baum et al. [14] take an approach to modeling fire plumes similar to the one
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I will present in the coming chapters. Although the specialization of Baum et al.’s

work is for large aviation hangers, the methodology is a reassuring sign that my

approach is valid. The authors use large eddy simulation (LES) and CFD codes to

visualize the flow. Large eddy simulation is a solution method in which the smallest

size of vortices is assumed to be the size of the mesh. Vortices smaller than the mesh

are subject to viscous effects and are dissipated. Mathematically, Baum et al. begin

with a paradigm similar to the one used in this thesis: a thermally buoyant plume

rising from a heat source. The flow is assumed to be at low Mach number; thus an

incompressible, or nearly incompressible assumption can be employed. The authors

start with the Navier Stokes equations with a time dependent average pressure

and take a perturbation expansion in temperature and density. Additionally, an

adiabatic lapse rate gives a definition of pressure in terms of reference, hydrostatic,

and perturbation pressure. The model uses Lagrangian elements to track fuel and

smoke particles throughout the flow. This actively models the process of propagation

by ember transport, which is a focus of this paper. The solution of the problem

involves an FFT-based solver, where the reduced system is solved directly. This

solution process differs greatly from the one I will present. The computation cost of

a direct method is far greater than what is considered in this work. I will introduce

a method that will involve reducing the system of equations to a manageable set

that can be solved nearly analytically.

Baum & McGrattan have also adapted their work for large industrial outdoor

fires [13]. Again, this is a different application in which ideas may be adapted

to aid the work I am conducting. The authors note that wildland fires have low

heat release per unit area of fuel, but a large area over which the fire can spread.

Although the application is not wildland fires, the authors provide insight into the

amount of energy released and the fuel consumption rate associated with such fires.

The authors take special care in how they model the stratified atmosphere. The

assumption is made that pressure is comprised of two different pieces, a stratified

hydrostatic pressure in the ambient air domain and a fire induced pressure. The

fire induced pressure is assumed to be small; thus, a perturbation analysis can be

used to identify the effects of the fire on the ambient region. They also introduce a
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radiative transport model to track the movement of energy induced by the fire. The

derivation starts with the Navier Stokes equations for a compressible fluid in which

ambient effects are taken into account. An interesting addition to the model is an

oxygen transport equation, which accounts for the fact that fire requires oxygen to

burn its fuel. They tie the burn rate to the local oxygen supply and the overall size

of the fire, then use models for the heat flux terms to couple the convective energy

transport equation and the radiation field. Similar to previous work, Lagrangian

elements are used to account for fuel usage, and also as a way to visualize the smoke.

And again, the computation cost of this type of work limits the complexity of the

model they can use, not only for the radiation field, but also for means of solving

the equations presented.

As mentioned before, the FDS model developed by NIST is one of the leading

simulations at this time. A more recent version released is FDS Version 6 [47],

and the background of the FDS model can be seen in previous release notes and

manuals. The FDS model uses LES, which in essence assumes that viscosity damps

vortices smaller than the size of the mesh being used. It is an extremely powerful

method for solving the Navier-Stokes Equations. FDS is not specifically tailored to

wildfires (as Wildland-urban interface Fire Dynamics Simulator (WFDS) [49] is),

but the techniques used are worth consideration.

FDS uses governing equations derived from the Navier-Stokes equations. In

particular, conservation of mass, mass fraction of species, momentum, and energy are

used in conjunction with the equation of state to constitute this model. In addition

to this system of equations, a constraint on pressure is used by taking the divergence

of the conservation of momentum equation. In any type of fire, the geometry of the

surfaces being modeled needs to be considered. FDS uses two different methods to

accurately capture the features of complex geometry. One method is used for ob-

jects which are resolved by the grid, called immersed boundary method (IBM). IBM

involves rewriting the momentum equations and using directional cosines to trans-

form the Cartesian coordinate system to a streamline coordinate system. To model

objects that are unresolved by the mesh, a second method of Lagrangian particles

is used. Embedded meshes are also used to increase the accuracy of the solution in



15

areas where complex interactions occur. A separate application, Smokeview, is used

to visualize the results from the model.

A modification of FDS was made to adapt the model to wildfires. The re-

sult is a model called Wildland-urban interface Fire Dynamics Simulator (WFDS)

[49], which is a theoretical or physics based model (see Section 1.3) that accounts

for fire/atmosphere and fire/fuel interactions. WFDS is a multi-phase model that

accounts for the solid and gaseous fuel, while additionally modeling the thermal radi-

ation of heat. A convective and radiative heat flux is a result of the fire/atmosphere

interaction, which is computed by the conservation laws. The assumption that the

combustion in the vegetation layer is mainly on the surface of the fuel bed allows

the use of two computational grids, which reduces the computation cost. The equa-

tions derived are numerically solved in the same manner as those in the FDS model.

The atmosphere is coupled to the fuel layer such that the vegetation is viewed as

a source of drag on flow supplying the fire as well as a method of preheating the

oxygen supplied to the fire. Additionally, moisture content of fuel, radiation of heat

from the fire, and chemical equations for the process of pyrolysis are used to make

the model more accurate and physical.

1.2.3 Techniques Involving Reactive Plumes

While all other solution techniques stem from the Navier-Stokes equations

and are mostly concerned with the macroscopic effects, reactive plume models are

concerned with both macroscopic and microscopic effects, including chemical re-

actions of molecules. Reactive plume models track concentrations of chemicals in

the system, similar to the approach taken by Lagrangian particles. The chemical

processes involved in fire itself are taken into account, allowing for the inclusion of

fuel consumption and entrainment into and out of the plume. The reactive plume

model is commonly used when there is interest in the number of pollutants present

in the atmosphere. Specifically Georgopoulos & Seinfeld [26] present an application

to plumes rising from a smokestack, or any other concentrated point source. The

model accounts for both the macroscopic and microscopic effects of the plume, in-

cluding the actual chemical reactions of the molecules present in the source and the
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plume. For the scope of this thesis, macroscopic effects will be considered, making

this type of approach impractical.

1.2.4 Conclusions

The focus of the derivation of this model will be closer to the models discussed

in Section 1.2.1. It should be noted here that the large majority of models reviewed

fall under the category of computational fluid dynamic (CFD) codes. CFD codes

have many different titles and involve physical solution methods to capture the small

scale physical features of the problem. Two broad categories of these CFD codes

and physical solution methods are large eddy simulation (LES) and direct numerical

simulation (DNS).

These types of models, especially the models developed by the government

agencies listed above, do well at predicting the behavior of both indoor and outdoor

fires. The simulations are accurate, and are presented in a way that appears realistic.

In fact, models such as FDS have been widely accepted in applications pertaining

to the development of standards on sprinkler systems in large industrial building

and adoption by the fire service. The fire service uses FDS to recreate situations in

which fallen firefighters have found themselves, not only to recreate the situations,

but also to teach others what situations to avoid.

The largest drawback of these types of models (CFD, LES, DNS, etc.) is the

computation time. To resolve the small scales of the problems, a large number of

computation nodes need to be used, drastically increasing the computation times

of the model. In fact, the computation times of these models has been known to

approach the order of weeks for a single simulation. Due to this, there is no real-

time capabilities and specifically, the model cannot be used in the field. By the time

results are obtained, the calculations are no longer valid due to the fact that fire

behavior can change much faster than results can be obtained.

The purpose of this model is not to say one approach is better than another.

In fact, a combination and mutual understanding of both models would allow the

community to benefit the most, which is the motivation for this type of work. In

the model developed in this thesis, simplifying assumptions are used to narrow the
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focus of the model to the key driving dynamics of the fire and fire plume. Due to

this the computation time of the model is on the order of minutes. It is understood

that the simplifying assumptions do sacrifice physical attributes of the problem, but

as seen in the results, Chapters 4, 6, and 7, the key driving dynamics are captured

accurately and there are many conclusions that can be made from the simulations. A

long-term goal of the model presented in this work is to gain predictive capabilities,

such that the model can be used in the field, either by incident command in charge

of dispersing the resources or by smoke jumpers in the thick of the action. Either

use will allow more well informed decisions to be made, addressing many of the

issues discussed previously.

1.3 Previous Works–Wildfire Spread

While many of the papers reviewed in the previous section do deal with mod-

eling of fire as well as the propagation of the plume, the papers reviewed in this

section are concerned mainly with modeling the phenomenon of fire spread. Indeed,

some of the models, such as WFDS, will be mentioned again in this section.

Fire spread models have been well known to span three separate categories,

empirical, semi-empirical, and physical. The differences between these types of

models is the approach in which the models are derived. The categories span from

empirical models, which use algebraic laws in conjunction with experimental data

and statistical methods to evaluate parameters, to physical models, which use nu-

merical solutions of conservation laws to model the fire. Of the papers considered

here, most are physical approaches derived from conservation equations and govern-

ing equations for motion of a flow, as will be the model presented later in this work.

But a few approaches are derived from reaction diffusion equations. Some of the

other approaches can be seen in such papers by Karafyllidis [31], Encinas [23], and

Vaz [72]. The paper by Pastor et al. [59] reviews major works from 1940 to 2003

and Mell et al. [51] describe needs of models and the research conducted at NIST.

The problem of modeling wildfire has been outlined by Viegas [73]. There are

seven stages of fire development, although not all seven occur in all fires. These

stages are: preheating and pyrolysis, ignition, initial growth, secondary growth,
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flame decay, extinction, and cooling. Additionally, fire propagation has been char-

acterized into three different categories: ground fire, surface fire, and crown fire.

Ground fires are those which occur underneath or within fuel beds. These types of

fires are incredibly hard to detect and extinguish. Many times it seems as though

the fire is surfacing at many different places. Surface fires are those which people

might be most familiar with, and are characterized by a typical fuel bed lying on

the ground. Crown fires are characterized as the situation where the tree-tops are

burning. It is easy to see that each of these fires can lead to any other kind, and in

a typical lifespan of a fire, all three categories can be observed. Viegas’ review and

subsequent laboratory tests are optimized for surface fires only. As was mentioned

earlier, there are many factors that influence the propagation of fires. Here, three

main influences are considered: topography, vegetation, and meteorology. Again it

is seen that upslope regions have a large influence on the spread speed. The higher

the angle of the slope, the faster the propagation. Interestingly, downslope regions

have little effect on the propagation speed. The vegetation layer is composed of

three regions, coincidentally the same names as the fire propagation. The largest

effect the vegetation has on the fire is the moisture content of the fuel. If there is

any moisture content, it acts as a heat sink. The fuel absorbs the heat to evaporate

the moisture so the fuel can pyrolyze. Viegas has found that the weather effects the

propagation of the fire the most. There are many factors in the weather that can

either aid or hinder the propagation. A few examples are air temperature, humidity,

precipitation, solar radiation, atmospheric stability, and especially wind [73]. In one

way or another all of these issues need to be addressed in any fire model.

1.3.1 Wind and Slope Driven Models

The papers presented here are models for fire propagation applied to wildfires.

There are many approaches and assumptions made to reduce the complex equations.

Models such as Albini [2], Balbi et al. [8, 9, 10], and Morandini et al. [54] have been

specifically tailored to wind and slope driven fires and focus largely on the flame-

structure interaction with the fuel bed.

Albini derives a physical model based on governing equations for the flow.
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This includes a mass flow and energy equation for the flame itself, while the flow is

described by momentum equations and the flow of oxygen to the fire. A constant

wind-speed is added to the system further reducing the equations. Focus is turned

to the flame and its interaction with the fuel. Albini concluded that combustion

takes place in the lower half of the flame structure, and in the wind driven situation,

the flame angle is independent of the flame height [2].

Balbi’s approach to the wind driven situation is much different. The first paper

[10], is an improvement on a previous model [8]. The first improvement involves the

tilt angle of the fire. The approach to the flame structure is geometrical; the flame

is assumed to be of triangular structure. From this, the angle of the flame can be

calculated from the quasi-analytical model for both high and low intensity winds.

It should be noted that this model also accounts for topography, and the wind

considered is taken to be flow induced up the slope. The second improvement deals

with the backward rate of spread. The influx of fresh air by the induced flow up the

slope slows the progress of the backward rate of spread [10]. The second paper [9] is

much the same as the first. The model is based on key assumptions, mainly dealing

with the flame structure, radiative effects, and velocity of flow driving the fire up

the slope. It is additionally assumed that all gases in the model are perfect gases

and the reactive gases are completely oxidized in the reaction. Again, the geometry

of the problem is used in conjunction with the assumptions to derive the governing

equations of the problem. This model simplifies the governing laws to a single

equation that give the rate of spread as a function of wind slope and vegetation.

Morandini’s approach is much like Balbi’s. Many assumptions are made about

the fire, including that the fuel bed is thermally thin, isotropic, and the fuel is

homogeneous. The heat transferred from the fire is assumed to be through radiation,

convection, and conduction, which is accounted for in fires in still air through a

single diffusive term. Once fuel is on fire, the mass of fuel simply decreases at

an exponential rate depending on the temperature, not through a specific mass

conservation. The heat generated by the combustion reaction is taken to be constant

for each unit of fuel. In the case of fire on a slope or under wind conditions, the

radiative heat transfer is a decreasing function of distance using the inverse square
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law. The equations for rays, representing the emitted heat, are written taking

into account the loss due to distance. A simple trigonometric argument is used to

calculate the flame angle based on the free stream velocity and the induced velocity

by the fire up the slope. It was found that at low angles and slow speeds, radiation

is the driving force for spreading the fire, but at an angle or under wind condition,

convection starts to become more important due to flow attachment [54].

1.3.2 Multi-Phase Models

A multi-phase model is an approach that takes into account the different phases

of matter influencing the physics of the problem. In the case of the wildfire, this

commonly means modeling the solid fuel and the surrounding flow. Some models

take this one step further and model the interaction between fuel and flow on several

different scales, as seen in Sero [66] and Margerit [44]. It is customary to see the

gaseous phase of the model described by the Navier-Stokes equations [44, 49, 56,

57, 61, 66], whereas the solid phase is modeled by conservation laws based on a

simple chemical reaction. In some of the models, the fuel is taken to be either

inhomogeneous [61] or on a microscopic level composed of oxygen, water, and fuel

[44, 66]

Morvan [56, 57] used this approach in the two papers reviewed here. In the

gaseous phase, the conservation (Navier-Stokes) laws are averaged over a control

volume, where terms to allow for the transition of matter through different phases,

the addition or loss of heat due to the reaction and radiation, and the drag forces due

to vegetation. The model uses a k−ε turbulence model to describe the mixing region

in the problem, radiation in the problem is governed by integrating the radiative

transfer equation, and effects of soot generation and transport are accounted for. In

the solid phase, the reaction dynamics are modeled using the law of mass action in

conjunction with an Arrhenius law. Results show and validate that in the absence

of wind conditions, wildfire propagation is driven by radiative heat transfer.

Sero et al. [66] and Margerit et al. [44] consider several scales in their models,

including the macro-, meso-, and micro- scopic formulations of the problem. In the

mesoscopic region, water vaporization and pyrolysis are considered in the vegetation
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region, and in the fuel region, the chemical reactions of combustion and oxidation

is accounted for. The fuel and vegetation regions are modeled by conservation laws

that allow the exchange of fuel from each of the states, where in the vegetation layer,

a conservation law for char allows the tracking of each of the species that occur in

the chemical equation. Several assumptions are made to reduce the equations and

boundary conditions between the two regions. To move to the macroscopic region,

an averaging procedure is used to model the large scale effects of the problem. One

will note that the equations are still conservation equations and appear similar to

the mesoscopic equations. Much work was done to close the system and account

for radiation to describe the flow in the air above the forest using the Navier-Stokes

equations [66]. Several simplifications of the equations are considered including the

reduction to two dimensions [44]. To do this, the height of the vegetation layer is

assumed to be small as to induce an asymptotic expansion of the equations in the

ratio of the vegetation height to the characteristic height of the forest fuel. The

method of multiple scales is introduced to simplify the equations to two dimensions,

while leaving the ability to keep more terms in the expansion.

Even though an overview of WFDS was given in the previous section, in this

section, the modeling assumptions for WFDS are considered. Mell et al. [49] set out

to derive a fully physical model, as a modification of the FDS model. The model uses

separate but coupled models for the solid fuel and the gas fuel under combustion. In

addition to this, a transient heat flux, which allows for both convective and radiative

heat transfer, is used. This results from the numerical solutions of conservation

laws of momentum, mass, energy, and major species. WFDS directly solves the

governing equations for the fire/fuel and fire/atmosphere interactions without using

simplifying assumptions to include the physical processes [50]. When considering

the actual equations and derivation of the equations, the gas phase is modeled

using the Navier-Stokes equations, where the influence of the grass fuel bed on the

ambient wind flow is approximated by a drag term. Multiple computation grids

are used to reduce computation time, where the LES model is used to approximate

physical processes that occur on scales finer than the ones considered. Equations for

conservation of species, conservation of energy, thermal radiation, and an equation
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of state are written. The thermal radiation equation tracks the energy transfer,

where the spectral frequency needs to be considered due to soot generation. Thus,

a soot model is used as well. In the solid fuel, standard conservation equations

are written, again with source terms to allow such additions and losses due to the

processes of pyrolysis, radiation, and oxidation [50].

1.3.3 Reaction-Diffusion Models

Another approach to modeling the wildfire problem is to assume a reaction-

diffusion type model. These models make assumptions about the physical processes,

which allow for the use of the reaction diffusion model. The models rely heavily on

a simple PDE for energy, which can appear as a heat equation [19, 74], or can

appear much more complicated due to additional terms [6, 11, 52, 53, 67]. These

additional terms allow for cooling, through Newton’s law of cooling, radiative heat

transfer, and heat sources. Due to the nature of these models, simplified numerical

approaches can be employed, such as finite differencing [11, 52, 53, 67, 74] and finite

element techniques [6, 11, 53] may be employed.

Montenegro [53] writes the standard reaction diffusion energy equation allow-

ing for convection, diffusion, cooling and heating due to the fire. A simple two stage

chemical reaction is used to describe the exothermic reaction. From this reaction,

the law of mass action is used in conjunction with an Arrhenius law to approximate

the reaction rate, while allowing for the derivation of the heat source due to the fire.

The reaction is simplified to a single stage reaction to allow for simpler equations.

A weak form of Laplace’s equation is solved using a least squares and an optimiza-

tion formulation for velocity, and both an implicit finite difference scheme and an

adaptive finite element method is used to solve the non-dimensional system.

Balbi [11] proposes an elemental cellular approach to this model of a laboratory

fire in the absence of wind and slope, with homogeneous fuel. Again, the standard

reaction diffusion equation is written allowing for cooling and the addition of a heat

source by assuming the fuel layer is thin. The diffusion term takes the place of

the convective, radiative, and conductive transfer of heat. The model uses data

from experiments to calculate the unknown parameters of the problem. By looking
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for standing wave solutions, the problem can be reduced to an eigenvalue problem,

where several cases of the solution need to be considered to fully solve the problem.

Again, both finite difference and finite element schemes are used to numerically

describe the problem.

Asensio & Ferrahut [6] use much of the same approach as the other papers

reviewed in this section. A simplified chemical reaction is used with the Arrhenius

law to approximate the reaction rate. Fuel degradation is assumed to be exponential

in nature. Radiative heat transfer by optical path, cooling, convection, a heat source

due to the exothermic reaction, and a phase change function to allow the change

between exothermic and endothermic reactions are all considered in writing the

reaction diffusion equation and mass equation. The system is put into weak form,

existence and uniqueness are proved, and is numerically solved using a mixed finite

element method.

Mercer & Weber [52] use the standard reaction diffusion equation, allowing

for all modes of heat exchange as the others in this section. Here the radiative

heat transfer is derived from Chandrasekhar’s integro-differential equation. Weber

provides initial conditions such that traveling wave solutions are present (due to the

reduction of the system), and the system is numerically solved using finite differ-

ences. It was found that the speed of the combustion wave depends of the square

root of the radiation heat transfer length.

Chetehouna [19] considers a multiphase approach that includes the drying of

the fuel, pyrolysis, heat convection, heat conduction, and radiative heat transfer.

Again the reaction diffusion equation is reduced to an eigenvalue problem by as-

suming a traveling wave solution, where an asymptotic expansion is taken in terms

of the eigenvalue to obtain several order problems. Just as Chetehouna reduced a

multi-phase formulation, Simeoni [67] does the same. Here it is assumed that the

fuel is a bed of pine needles, modeled by cylinders randomly distributed across the

fuel bed. The flow only in the horizontal direction is considered, and the model

was verified by experiments in a wind tunnel. Weber [74] uses a reaction diffusion

equation to derive a comprehensive model which accounts for advection, radiation,

and the heat due to the reaction. The model is considered in both the gas and solid
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phases. The equation is transformed to a moving reference frame, where a traveling

wave solution can be used to reduce the PDE to an ODE for temperature. With

this the solution suggests that fires propagate creating a series of grown ellipses that

move in time, which agrees with field observations.

1.3.4 Geometric and Radiation Driven Models

The two approaches considered in this section are noticeably different from

those mentioned in the previous sections. In Albini’s paper [4], the notion that

radiation is the driving spreading force of a fire in the absence of wind and slope is

used and investigated. Thus, it is assumed that heat is only transported through

radiation, the flame itself extends above a uniform fuel layer, and fuel particles are

black bodies (only absorb energy and do not scatter). The radiation field that results

is a PDE for the intensity of energy radiated throughout the region. The divergence

of the net radiant flux is written as the integral over the solid angle of the intensity

of the energy. The temperature of a particle depends on its stage in the combustion

process. Thus, as a particle is heated, the water first evaporates and then the fuel

particle ignites. After non-dimensionalization, the problem reduces to an eigenvalue

problem that is solved both analytically and using an iterative solution. The model

is able to predict the fire front shape and the intensity of the energy radiated into

the fuel layer.

Dold & Zinoviev [20] have approached the problem of calculating the behavior

of an unsteady fire line differently. The resulting approach is simpler and more

geometrically approached. The authors introduce notation for fire line intensity

through Byram’s formula, which relates fire line intensity to spread rate, energy of

combustion, and fuel load. Technically, Byram’s formula is only valid for the case of

a steady fire spread. In the steady case, geometry can be used to derive all necessary

pieces of information, where Byram’s formula is verified. Considering an unsteady

fire spread is not so simple. The fire front is parametrized to allow the shape of

the fire front to change and to track the movement into the fresh fuel. To describe

the shape of the fire front over time, a total derivative is taken and set equal to the

effects of arc length and the spread of fire into the fuel. The intensity of the fire is
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written as an integral of the heat released, the pyrolysis speed, and the fire spread

speed over the arc length. Simplifications of the model are taken using either a

small fuel bed and a fast spread rate or fast pyrolysis and a spread rate slower than

the burning speed. The dependence of the spread rate on intensity is examined for

several different situations and assumptions. The intensity of the fire feeds energy

back into the fresh vegetation ahead of the fire, which ultimately determines the

spread rate of the fire.

Dold et al. [21] use much of the same formulation as the previous paper by

Dold & Zineoveiv. Again, the fire line intensity is written as an integral over the

fire region. Reductions are taken for large spread rates over fire burning rate, which

simplifies the integral of intensity. The spread rate is assumed not to vary rapidly in

time, which allows for a perturbation to be taken. Again, the relationship between

spread rate and intensity is investigated, but this time it is a non-linear relationship,

which allows for the investigation of stable fire spread and eruptive fire spread.

1.3.5 Conclusions

The fire model presented in this thesis will use aspects from each of the sections

of previous works. The derivation of equations will closely follow the derivation from

Section 1.3.2, where the different phases of matter will be considered across multiple

models. The plume model will investigate the interaction between the plume and

ambient atmosphere, whereas the fire model will investigate the interaction between

the fire and the fuel layer. When coupled, these two models will resemble a multi-

phase approach.

1.4 Formulation

As was mentioned, the model of wildfire in this thesis will be decomposed

into models that examine fundamental interactions. This section will outline which

chapters are concerned with which fundamental models, initial assumptions and

geometry.
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Figure 1.1: Plume Surrounded By Ambient Air in Cartesian Coordinate
System in Upper Half-Plane

1.4.1 Plume Model

Chapter 2 through Chapter 4 describes the approach for deriving the plume

model. The plume model focuses on the interaction between the plume and the

surrounding ambient air. Before I present the equations of motion that describe

the flow of the fluid, I need to make some initial assumptions about the geometry

of the problem. Consider a Cartesian coordinate system in the upper half plane

(see Figure 1.1), and assume that the fire lies along a line in the x2 direction. I

will also be making the simplification that the ambient air (outside the plume) is

independent of the plume itself, except for entrainment effects. Thus, resulting in

two disjoint dynamical systems (save entrainment): the ambient air system and

the plume system. I assume the plume is narrow, and using the disjointedness of

the two systems, the plume represents a jump discontinuity from the perspective of

the ambient air system. The jump discontinuity allows the addition of ideas from

fluid dynamics, which permit the plume to react more accurately to atmospheric

conditions. I will use ideas from the theory of fluid-structure interactions [1] in

analogy to the equations of motion that describe the flapping of a flag in the wind.

I use the Navier Stokes Equations to describe the motion of the fluid in the

two-dimensional Cartesian geometry. The flow in the ambient air is driven by the

thermally driven plume. As the hot gases rise from the fire, the gas in the plume

rises and entrains the ambient air, thus inducing a flow throughout the entire do-

main. The rate of entrainment is determined by the relative velocity between the
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plume and the ambient air system. This means the faster the plume rises relative

to the ambient air, the faster the plume entrains air into the plume. Several more

simplifying assumptions are made to reduce the system of equations. Due to the

nature of the two systems, I formulate the problem as a boundary layer problem

with corresponding inner and outer solutions. The inner solution corresponds to

the plume, while the outer solution corresponds to the ambient air. Physical atmo-

spheric effects are included in the system, which allows the stratification of density,

hydrostatic pressure, and temperature. I implement the analytic set of equations

in MATLAB to obtain numerical solutions. In the initial efforts, I use first order

solution methods to describe interesting dynamical effects with rapid and efficient

computation solution techniques. In future work, higher order solution techniques

may be investigated to see if the effects of higher order accuracy outweigh compu-

tational costs.

The equations are solved using a time iterative method, where the plume

properties are updated, followed by an update of the ambient air motion. Finally,

the new position of the plume is calculated, and the results are plotted. In the

graphical output, the plume is shaded by the density of the gases. The red, hot,

colors indicate low density, and the blue, cool, colors indicate a higher density.

Energies are tracked though the plume to determine if the energies are em-

phasized at certain frequencies. Specifically, the kinetic energy and enstrophy are

calculated due to their essential nature in physical processes.

1.4.2 Fire Model

The plume model accounts for a fire by using a stationary point source fire.

The fire model described in Chapters 5 and 6 allows the description of the fire to

be more than just a point source. It is assumed that a thin fuel layer lies on the

ground underneath the fire plume, see Figure 1.2. Ideally, there are four regions

that need to be considered: the unburned fuel region, the pyrolyzing fuel region, the

fire region, and the smoldering fuel region. Physically, the fire radiates heat that

converts solid fuel to gas fuel, and the gas fuel eventually burns. For means of a first

approach to modeling the fire, this paradigm will be simplified even further, where
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Figure 1.2: Fuel Layer With Distinct Regions for Fire Model

only a homogeneous fire region will be considered.

A control volume derivation is used to write conservation laws for total den-

sity, fuel density, oxygen density, and energy in the fire region. A quasi steady-state

assumption is made to reduce the system to algebraic expressions for key pieces of

data needed in making the model more physical and accurate. Once solved numeri-

cally and implemented in MATLAB, the fire model and plume models are coupled.

In doing so, the information from the fire model is injected into the plume model

through the point source fire and the ambient air flow influences the propagation of

the fire. A feedback loop is created, allowing the fire to influence the propagation

of the plume and the ambient air flow, which in turn influences the propagation of

the fire.

Numerically the two models are coupled in a novel way. The situation of

a crosswind flow in the plume model is used with a change of reference frame to

describe the case of a propagating fire. Thus, instead of air moving past a stationary

fire, a fire will be moving past stationary air. The same energies are tracked through

the propagation of the plume to investigate the nature of the fire dynamics.
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1.4.3 Extensions

There are many possible extensions that can be made to the plume and fire

models. Some of these extensions are outlined in Chapter 8. One extension that was

considered after the case of a propagating fire is the extension to fire propagation

on a slope and is presented in Chapter 7. This extension involves a simple change

in the implementation of the equations from the plume model.

The results from all chapters will be summarized and submitted for publica-

tion.



CHAPTER 2

Equations of Motion for Plume Model

In this chapter, the equations of motion and conservation equations will be de-

rived for the plume model, describing both the plume and ambient air systems.

The equations are derived from first principles, where simplifying assumptions and

asymptotics are used to narrow the focus of the model down to the key driving

dynamics of the fire plume. This is done in such a way that during future work,

more terms in the asymptotic expansions can be used, making the assumptions more

accurate and physical.

The situation under consideration in this model is a fire line oriented along the

x2 axis, as seen in Figure 2.1. The fire line is assumed to be nearly straight, and its

width is taken to be small compared to the length scale in the x1 direction–chosen

relative to the distance the fire is expected to travel in a reasonable amount of time,

as seen if Figure 2.1. From the well-defined fire line rises a sheet plume, which

will bend and react to the wind conditions present in the ambient atmosphere. To

reduce this three-dimensional situation to reflect the two-dimensional formulation

from Section 1.4, a slice through the sheet plume, perpendicular to the fire line, is

taken. With this, the situation reduces to the one shown in Figure 1.1.

Another important aspect of the model that will be exploited in this chapter

is how the two systems (plume and ambient air) are connected; specifically, the two

systems only interact through the entrainment of air. The plume is assumed to

be narrow compared to the length scale of the ambient air region. With this, the

assumption is that the plume represents a jump discontinuity from the perspective

of the ambient air system, see Figure 2.2. This will be key in the derivation of the

equations, not only in the ambient air system, but also in the plume system.

2.1 General Equations of Motion

The atmosphere is a complex fluid flowing on scales that reflect the importance

of buoyancy, density and temperature stratification, and small scale mixing. To de-

30
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Figure 2.1: Cartesian Coordinate System in Upper Half-Plane
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Figure 2.2: Perspective From Ambient Air

scribe the flow of this fluid, the unsteady Reynolds-averaged Navier-Stokes (uRaNS)

equations for inviscid flow are written in three dimensions, along with conservation

equations and an equation of state:

ρt + (ρui)xi = 0 (2.1.1a)

ρ [(ui)t + uk(ui)xk ] + pxi − ρgeg i = TReij xj (2.1.1b)

ρCp [Tt + uiTxi ]− [pt + uipxi ] = Q+ qRei xi (2.1.1c)
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p = ρR̄T. (2.1.1d)

Here, x = (x1, x2, x3) are cartesian coordinates (see Figure 2.1), t is time, ρ is

density, T is temperature, u is velocity, p is pressure, Q is a heat source, TRe is the

Reynolds stress, qRe is the Reynolds heat flux, g is gravity in direction eg, R̄ is the

ideal gas constant, and Cp is the specific heat at constant pressure.

The system (2.1.1) is non-dimensionalized by making the changes of variables:

τ =
t

t0
yi =

xi
li

ρ = ρ0R̃(yi, τ)

ui = U0vi(yi, τ) T = T0θ̃(yi, τ) p = p0P (yi, τ)

Q =
E0

t0
Q̃ TRe = η0T̃

Re(yi, τ) qRe = ξ0q̃
Re(yi, τ),

where t0, li, ρ0, U0, T0, p0, E0, η0, and ξ0 are the scaling constants for time, space,

density, velocity, temperature, pressure, the heat source, the Reynolds stress, and

the Reynolds heat flux respectively.

The flow induced by a line heat source representing a fire is of interest; thus,

it is also assumed that the temperature, density and velocity have the form:

? = ?0

{
?o(yi, τ) for |y1 − y1p| ≥ b

2
(2.1.2a)

?(yi, τ) for |y1 − y1p| ≤ b
2
, (2.1.2b)

where ?o(yi, τ) represents scaled ? outside the plume, and ?(yi, τ) represents scaled

? inside the plume. Also, define y1p(y3, τ) as the centerline of the plume and b(y3, τ)

is the width of the plume. In this section for the purposes of scaling, it will be

assumed that the general form of these variables is ? = ?0 · ?̃(yi, τ).

The changes of variables are substituted into (2.1.1) and simplified to obtain

the non-dimensional system:

R̃τ +
U0t0
l3

l3
li

(
R̃ṽi

)
yi

= 0 (2.1.3a)

R̃

[
(ṽi)τ +

U0t0
l3

l3
lk

(ṽk(ṽi)yk)

]
+

p0t0
ρ0U0l3

l3
li
Pyi −

R̃t0geg i
U0

=
η0t0
ρ0U0l3

l3
lj
T̃Reij yj (2.1.3b)
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R̃

[
θ̃τ +

U0t0
l3

l3
li
ṽiθ̃yi

]
−
[

p0

ρ0CpT0

Pτ +
U0t0p0

ρ0CpT0l3

l3
li
ṽiPyi

]
=

E0

ρ0CpT0

Q̃

+
ξ0t0

ρ0CpT0l3

l3
li
q̃Rei yi (2.1.3c)

p0P = ρ0R̃R̄T0θ̃. (2.1.3d)

The thermal effects are separated from dynamical effects in the pressure. To

do this, the dependent variables are scaled in a perturbation series [63] as follows:

P = P (H) + βP (H1) + σP (1) ṽi =
l3
U0t0

ṽ
(0)
i

R̃ = R̃(0) T̃Reij = T̃
(0)
ij

q̃Rei = q̃(0) θ̃ = θ̃(0),

(2.1.4)

where here, P (H)(yi, τ) is the leading order hydrostatic pressure, P (H1)(yi, τ) is the

order β correction to the hydrostatic pressure, and P (1)(yi, τ) is the dynamic pres-

sure. It is assumed that the separation parameters, β and σ, are chosen such that

a well ordered expansion in pressure is obtained (verification to follow).

Upon substituting these expansions into (2.1.3), the system reduces to:

R̃(0)
τ +

l3
li

(
R̃(0)ṽ

(0)
i

)
yi

= 0 (2.1.5a)

ρ0l
2
3

p0t20
R̃(0)

[
(ṽ

(0)
i )τ +

l3
lk

(
ṽ

(0)
k (ṽ

(0)
i )yk

)]
+
l3
li

(
P (H)
yi

+ βP (H1)
yi

+ σP (1)
yi

)
=
ρ0l3geg i
p0

R̃(0) +
η0

p0

l3
lj
T̃

(0)
ij yj

(2.1.5b)

R̃(0)

[
θ̃(0)
τ +

l3
li
ṽ

(0)
i θ̃(0)

yi

]
−
[

p0

ρ0CpT0

(
P (H)
τ + βP (H1)

τ + σP (1)
τ

)
+

p0

ρ0CpT0

l3
li
ṽ

(0)
i

(
P (H)
yi

+ βP (H1)
yi

+ σP (1)
yi

)]
=

E0

ρ0CpT0

Q̃+
ξ0t0

ρ0CpT0l3

l3
li
q̃

(0)
i yi

(2.1.5c)

p0

(
P (H) + βP (H1) + σP (1)

)
= ρ0R̃

(0)R̄T0θ̃
(0). (2.1.5d)
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2.1.1 Assumptions

The paradigm of interest is a plume of hot gases rising through, and disturbing,

an ambient body of air. As discussed in Section 1.4, the rising gases in the plume

entrain the ambient air, causing a flow that interacts with the plume and the fire.

Scalings that are consistent with this scenario will be discussed. There are several

assumptions, which are presented and discussed here, that ensure the balances and

scalings are correct.

The driving force in the equations, specifically the momentum equation (2.1.5b),

is the buoyancy force in the plume. Consequently, the leading pressure term needs to

balance the gravity term. By the same token, in the temperature equation, (2.1.5c),

the temperature terms need to balance the heat source term. Thus, the following

definitions are taken:

σ =
l23

R̄T0t20
(2.1.6)

R̄ =
p0

ρ0T0

⇒ p0 = R̄ρ0T0 (2.1.7)

R̄

Cp
=
γ − 1

γ
, (2.1.8)

where γ ≡ specific heat ratio. In addition, a scaled plume velocity is defined by:

Vp ∝
E0

T0ρ0Cp
. (2.1.9)

The balance (2.1.7) is obtained from the equation of state, (2.1.5d), and is used

to relate pressure, temperature and density scales. Equation (2.1.8) is a classic

relation from thermodynamics, and the definition (2.1.9) was made to simplify and

scale expressions later in the plume system.

A perturbation analysis for σ and β small is made. It is verified in this section

that this assumption of σ and β small is consistent with atmospheric flow on the

scale of a wildfire. Note that if a length scale of 100m and a time scale of 4sec are

taken:

σ =
l23

R̄T0t20
≈ (100m)2(

286.9 m2

sec2K

)
(292.3669K) (4sec)2 = 0.00745,
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where the temperature scale used is T0 = p0
R̄ρ0
≈ 101000 kg

msec2(
286.9 m2

sec2K

)
(1.2041 kg

m3 )
= 292.3669K.

Also, it is taken that R̄ is the gas constant for dry air. From this, it is verified that

σ is a small parameter. The choice of σ in (2.1.6) was made to ensure that the P (1)

term balances with the velocity terms in the momentum equation (2.1.5b). It must

also be noted that physically σ represents the square of the Mach number. This can

be seen by rewriting σ such that:

σ =

l23
t20

R̄T0

=

l23
t20

c2
= Ma2,

where the numerator can be thought of as the square of a velocity scale, and the

denominator is c2, the square of the sound speed.

It can be seen that R̄T0 is the sound speed by considering the original Navier-

Stokes equations:

ρt +∇ · (ρu) = 0

ρ [ut + u · ∇u] = −∇p.

Take p = p(ρ) and expanding the velocity and density in a perturbation expansion,

one has u = εu1, ρ = ρ0 + ερ1. Keeping only the O(ε) terms:

ρ1 t + ρ0∇ · (u1) = 0

ρ0u1 t = −∂p
∂ρ

(ρ0)∇ρ1,

since ρ0 is a constant. Upon taking the time derivative of the first, the divergence

of the second, and combining, one obtains:

∂ρ2
1

∂t2
=
∂p

∂ρ
(ρ0)∇2ρ1,

where it is recognized that ∂p
∂ρ

(ρ0) = c2. Additionally using the equation of state,
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p = ρRT , and taking the derivative with respect to density, one obtains:

∂p

∂ρ

∣∣∣∣
T=const

= RT,

with this, one has that R̄T0 = c2 and represents the isothermal sound speed.

Thus, σ = Ma2, where Ma is the Mach number and σ � 1 corresponds to

a small Mach number for this flow, so that the characteristic velocities are small

compared to the sound speed.

For later reference the size of some of the parameters will be provided to verify

the perturbation analysis assumption:

l3
t20g
≈ 100m(

9.8 m
sec2

)
(4sec)2 = 0.6378

β =
gl3
R̄T0

≈
(
9.8 m

sec2

)
(100m)

(286.9 m2

sec2K
)(292.3669K)

= 0.011683,

where β represents a buoyancy parameter. Again, the physical meaning of β is

investigated by rewriting the expression as:

β =
gl3
v2

v2

R̄T0

= RiMa2,

where v2 =
l23
t20

, and Ri is the Richardson number. Physically, this parameter repre-

sents the ratio of the rise velocity to the sound speed of the system. Thus, saying β

is small corresponds to an o(Ma−2) Richardson number for this flow.

The assumption about pressure, (2.1.4), could be thought of as the first three

terms in an asymptotic expansion. There are various order problems that result

from the single expansion. At this point, additional terms in the expansions are

not considered. Later, first approximation systems will be discussed. These systems

have been taken to be analogous to the O(1) expansion of an asymptotic expansion

problem [29], by letting the small parameters (β and σ) go to zero. From this, the

first approximation system of the asymptotic expansion problem is obtained.

With these balances, the assumptions, (2.1.6)-(2.1.8), are substituted into the



37

non-dimensional system (2.1.5) to get the simplified system that will be used for the

rest of this chapter:

R̃(0)
τ +

l3
li

(
R̃(0)ṽ

(0)
i

)
yi

= 0 (2.1.10a)

l23
R̄T0t20

R̃(0)

[
(ṽ

(0)
i )τ +

l3
lk

(
ṽ

(0)
k (ṽ

(0)
i )yk

)]
+
l3
li

(
P (H)
yi

+
gl3
R̄T0

P (H1)
yi

+
l23

R̄T0t20
P (1)
yi

)
=
gl3eg i
R̄T0

R̃(0) +
η0

R̄ρ0T0

l3
lj
T̃

(0)
ij yj

(2.1.10b)

R̃(0)

[
θ̃(0)
τ +

l3
li
ṽ

(0)
i θ̃(0)

yi

]
− γ − 1

γ

[(
P (H)
τ +

gl3
R̄T0

P (H1)
τ +

l23
R̄T0t20

P (1)
τ

)
+
l3
li
ṽ

(0)
i

(
P (H)
yi

+
gl3
R̄T0

P (H1)
yi

+
l23

R̄T0t20
P (1)
yi

)]
= VpQ̃+

ξ0t0
ρ0CpT0l3

l3
li
q̃

(0)
i yi

(2.1.10c)

P (H) +
gl3
R̄T0

P (H1) +
l23

R̄T0t20
P (1) = R̃(0)θ̃(0). (2.1.10d)

The additional assumptions that l3, l1 � l2 and l1 ∝ l3 are made, and to set the

coordinate system, choose:

eg =


0

0

−1

 .

Due to the geometry of the problem, the solution method will be reminiscent

of the solution to a boundary layer problem. With this, the solution of the sys-

tem (2.1.10) represents the general solution to the boundary layer problem being

examined. An additional set of assumptions will differentiate the inner and outer

solutions, which will be discussed in Section 2.2 and Section 2.3.

2.2 Outer Solution

The ambient air system describes the flow of the fluid outside the plume, which

includes the transportation of vorticity throughout the system. Mathematically, the

dynamics of this system are viewed as the outer solution of a boundary layer problem.

The two names (ambient air system and outer solution) will be interchanged as they



38

mean the same thing. The system (2.1.10) from above is used and it is additionally

chosen that Q̃ = 0, ṽ = vo,
ξ0t0

ρ0CpT0l3
� 1, η0

R̄ρ0T0
� 1, σ = Ma2, and β = RiMa2. In

the ambient air system only, following the expansion of pressure, let R̃ = R
(H)
o +

βR
(H1)
o + σR

(1)
o , θ̃ = θ

(H)
o + βθ

(H1)
o + σθ

(1)
o .

Substituting these above assumptions and the limiting case assumptions (2.1.6),

(2.1.7), (2.1.8) into (2.1.10), dropping the unneeded expansion notation and expand-

ing results in the system:

(
R(H)
o + βR(H1)

o + σR(1)
o

)
τ

+
[(
R(H)
o + βR(H1)

o + σR(1)
o

)
vo 1

]
y1

+
[(
R(H)
o + βR(H1)

o + σR(1)
o

)
vo 3

]
y3

= 0 (2.2.1a)

σ
(
R(H)
o + βR(H1)

o + σR(1)
o

)
[(vo 1)τ + (vo 1(vo 1)y1) + (vo 3(vo 1)y3)]

+P (H)
y1

+ βP (H1)
y1

+ σP (1)
y1

= 0 (2.2.1b)

σ
(
R(H)
o + βR(H1)

o + σR(1)
o

)
[(vo 3)τ + (vo 1(vo 3)y1) + (vo 3(vo 3)y3)]

+P (H)
y3

+ βP (H1)
y3

+ σP (1)
y3

= −β
(
R(H)
o

+ βR(H1)
o + σR(1)

o

)
(2.2.1c)(

R(H)
o + βR(H1)

o + σR(1)
o

) [ (
θ(H)
o + βθ(H1)

o + σθ(1)
o

)
τ

+ vo 1

(
θ(H)
o + βθ(H1)

o + σθ(1)
o

)
y1

+ vo 3

(
θ(H)
o + βθ(H1)

o + σθ(1)
o

)
y3

]
−γ − 1

γ

[
P (H)
τ + βP (H1)

τ + σP (1)
τ + vo 1

(
P (H)
y1

+ βP (H1)
y1

+ σP (1)
y1

)
+ vo 3

(
P (H)
y3

+ βP (H1)
y3

+ σP (1)
y3

)]
= 0 (2.2.1d)(

R(H)
o + βR(H1)

o + σR(1)
o

) (
θ(H)
o + βθ(H1)

o + σθ(1)
o

)
= P (H) + βP (H1)

+ σP (1). (2.2.1e)

2.2.1 O(1) Ambient Air System

A first approximation is made, using the fact that Ma2 � 1 (σ � 1) and

β � 1 to get the first approximation system:

R(H)
o τ +

(
R(H)
o vo 1

)
y1

+
(
R(H)
o vo 3

)
y3

= 0 (2.2.2a)

P (H)
y1

= 0 (2.2.2b)

P (H)
y3

= 0 (2.2.2c)
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R(H)
o

[
(θ(H)
o )τ + vo 1(θ(H)

o )y1 + vo 3(θ(H)
o )y3

]
−γ − 1

γ

[
P (H)
τ + vo 1P

(H)
y1

+ vo 3P
(H)
y3

]
= 0 (2.2.2d)

P (H) = R(H)
o θ(H)

o . (2.2.2e)

Use of the momentum equations, the energy equation, the boundary conditions, and

the equation of state easily gives θ
(H)
o = 1, R

(H)
o = 1, and P (H) = 1.

2.2.2 O(β) Ambient Air System

Continuing to separate orders, the next order system is the O(β) system:

R(H1)
o τ +

(
R(H1)
o vo 1

)
y1

+
(
R(H1)
o vo 3

)
y3

= 0 (2.2.3a)

P (H1)
y1

= 0 (2.2.3b)

P (H1)
y3

= −R(H)
o (2.2.3c)

R(H)
o

[
(θ(H1)
o )τ + vo 1(θ(H1)

o )y1 + vo 3(θ(H1)
o )y3

]
−γ − 1

γ

[
P (H1)
τ + vo 1P

(H1)
y1

+ vo 3P
(H1)
y3

]
= 0 (2.2.3d)

P (H1) = R(H1)
o + θ(H1)

o . (2.2.3e)

The expressions for the O(β) corrections to density, temperature, and hydro-

static pressure can be found. Noting that the energy equation, (2.2.3d), can be

written in terms of material derivatives yields:

Dθ
(H1)
o

Dτ
=
γ − 1

γ

DP (H1)

Dτ
.

Thus,

Dθ
(H1)
o

Dτ
= (γ − 1)

DR
(H1)
o

Dτ
,

and integrating gives:

θ(H1)
o = (γ − 1)R(H1)

o + c1.
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Using the equation of state, one obtains:

P (H1) = R(H1)
o + (γ − 1)R(H1)

o + c1

P (H1) = γR(H1)
o + c1,

from which one obtains:

P (H1)
y3

= γR(H1)
o y3

.

Using the momentum equation in the y3 direction, one obtains the differential rela-

tion:

γR(H1)
o y3

= −R(H)
o = −1

R(H1)
o y3

= −1

γ
.

Thus:

R(H1)
o = −1

γ
y3 + c2.

Using the boundary condition at the ground, c2 = 0, and:

R(H1)
o = −1

γ
y3.

Thus,

R(H1)
o = −1

γ
y3

θ(H1)
o =

(
1

γ
− 1

)
y3 + c1

P (H1) = −y3 + c1.

Again using the boundary condition at the ground, c1 = 0. This also ensures all

three full expansions go to zero as y3 → ∞. After using the boundary conditions,
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one obtains:

R(H1)
o = −1

γ
y3 (2.2.4)

θ(H1)
o =

(
1

γ
− 1

)
y3 (2.2.5)

P (H1) = −y3. (2.2.6)

With this, the full asymptotic expansions can be written as:

P = 1− βy3 + σP (1) (2.2.7)

θ = 1− β
(

1− 1

γ

)
y3 + σθ(1)

o (2.2.8)

R = 1− β 1

γ
y3 + σR(1)

o . (2.2.9)

One can easily see that a first term approximation physically corresponds to an

unstratified atmosphere. Keeping the O(β) correction in the expansions allows each

of the quantities to decrease as height increases. Physically, the two term approx-

imation corresponds to a physically accurate stratified atmosphere. From here on,

approximations of the asymptotic expansions are taken, such that only the first non-

zero terms are included. Thus, the ambient air system is seen to be incompressible

under this first term approximation. One will note that the O(β) correction to the

pressure will be used in the plume system where pressure gradient terms are needed.

2.2.3 O(σ) Ambient Air System

Finally, the O(σ) system is written as:

R(1)
o τ +

(
R(1)
o vo 1

)
y1

+
(
R(1)
o vo 3

)
y3

= 0 (2.2.10a)

R(H)
o [(vo 1)τ + (vo 1(vo 1)y1) + (vo 3(vo 1)y3)] + P (1)

y1
= 0 (2.2.10b)

R(H)
o [(vo 3)τ + (vo 1(vo 3)y1) + (vo 3(vo 3)y3)] + P (1)

y3
= 0 (2.2.10c)

R(H)
o

[
(θ(1)
o )τ + vo 1(θ(1)

o )y1 + vo 3(θ(1)
o )y3

]
−γ − 1

γ

[
P (1)
τ + vo 1P

(1)
y1

+ vo 3P
(1)
y3

]
= 0 (2.2.10d)
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P (1) = R(1)
o + θ(1)

o . (2.2.10e)

For the purpose of this work, the O(σ) system is used for the calculation of the

velocity and vorticity. It is easily seen that expressions for the O(σ) contributions

of temperature and density can be written using a similar process to (2.2.3). In

addition, Bernoulli’s equation can also be used for a derivation of the pressure in

this system, see Section 2.2.7.

2.2.4 Vorticity Transport Equation

The vorticity equation can be found from the O(σ) equations, (2.2.10). The

curl of the momentum equations is taken to derive the vorticity equation:

ωτ + vo 1ωy1 + vo 3ωy3 = − (∇ · v̂)ω,

where v̂ = (vo 1, vo 3)T . Equation (2.2.1a) is used to find an expression for (∇ · v̂).

This simplification results in:

Dω

Dτ
=

ω

Ro

DRo

Dτ
. (2.2.11)

Using the full three term expansion of density, (2.2.9), in (2.2.11) and following the

expansion of the other ambient air variables, ω = ω0 + βω1 + σω2. Upon separating

orders:

Dω0

Dτ
= 0 (2.2.12)

Dω1

Dτ
=

1

γ
vo 3ω0 (2.2.13)

Dω2

Dτ
= −ω0

(
R(1)
o τ +R(1)

o y1
v1 +R(1)

o y3
v3

)
. (2.2.14)

Assuming constant density (a first non-zero approximation of the asymptotic

expansion) means the O(1) vorticity equation is solved and integration yields:

Dω0

Dτ
= 0 =⇒ ω0 = constant. (2.2.15)
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Thus, the vorticity is constant along streamlines in the ambient air domain (up to

a first order approximation). If it is assumed that all streamlines terminate at ±∞,

and that there is no vorticity far from the plume, the result is:

ω0 = 0. (2.2.16)

For the scope of this work, only the lowest order approximation to vorticity

is used. It is easily seen that more terms in the approximation can be considered

and would involve solving the corresponding order vorticity equation. Thus, the

flow in the ambient air is irrotational, up to a first term approximation. With this

and the asymptotic expansion of density, the ambient air flow is incompressible and

irrotational, up to a first non-zero approximation.

2.2.5 Velocity in the Ambient Air

The flow in the ambient air is assumed to be induced by the point source fire

and entrainment of air into the plume. In calculating the velocity in the ambient

air, several features are used to simplify the calculation. From the perspective of the

ambient air system, the plume represents a discontinuity. It is assumed that the net

entrainment is into the plume. Thus, the entrainment can be represented by a line

sink/vortex combination along the discontinuity that represents the plume. Once

the system is discretized to be solved numerically, the line sink/vortex is represented

by point sink/vortices at each computation node, see Section 3.1 for details on the

discretization.

Since the flow is two-dimensional, irrotational, and incompressible, a potential

flow solution to calculate the velocity is appropriate for computational points far

from the discontinuity. Additionally, the velocity induced by the line sink/vortex

combination on the discontinuity that represents the plume can be expressed as a

Biot-Savart integral. The potential flow solution is used for all points away from

singularities, and the Biot-Savart integral is used at points where singularities occur

following Alben and Shelley [1]. From this, the velocity, potential, and stream

functions can be written.

Following Marshall [45], the Helmholtz Representation Theorem is used to
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write the velocity, v̄ = (ū, v̄), as:

v̄ = ∇α +∇× β. (2.2.17)

Here α is the scalar potential, β is the vector potential, and:

α =

∫
V

G(y − y′)∆(y′, t)dv′ (2.2.18)

β = −
∫
V

G(y − y′)ω(y′, t)dv′, (2.2.19)

where,

∇2α = ∆ = ∇ · v̄ (2.2.20a)

∇2β = −ω = −∇× v̄. (2.2.20b)

For a two dimensional flow, β = βey2 , ω = ωey2 , and G(y − y′) represents

the Green’s function. In two dimensions G(y − y′) takes the form: G(y − y′) =

1
2π

ln |y − y′|, y = (y1, 0, y3)T . Thus,

α =

∫
A

1

2π
ln |y − y′|∆(y′, t)da′ (2.2.21)

β = −
∫
A

1

2π
ln |y − y′|ω(y′, t)da′. (2.2.22)

2.2.5.1 Point Source/Sink or Vortex

The interest is to write the velocity induced by a single point source/vortex,

away from any singularities. This can be done by using a pure potential flow solution.

It is well known that for a point source/sink, one has ∆(y1 − y′1, y3 − y′3) =

mδ(y1 − y′1, y3 − y′3), where m represents the source/sink strength. The expression

for α can be obtained by substituting into (2.2.21):

α =
m

2π
ln
(
(y1 − y′1)2 + (y3 − y′3)2

) 1
2 . (2.2.23)

Similarly for a vortex, ω(y1 − y′1, y3 − y′3) = Ωδ(y1 − y′1, y3 − y′3), where Ω

represents the point vortex strength. Upon substituting into (2.2.22), the expression
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for β can be found:

β = − Ω

2π
ln
(
(y1 − y′1)2 + (y3 − y′3)2

) 1
2 . (2.2.24)

Using the law of superposition and (2.2.17), an expression for the velocity, v̄,

can be written as:

v̄ = ∇α +∇× β =

 m(y1−y′1)

2π[(y1−y′1)2+(y3−y′3)2]
− Ω(y3−y′3)

2π[(y1−y′1)2+(y3−y′3)2]
m(y3−y′3)

2π[(y1−y′1)2+(y3−y′3)2]
+

Ω(y1−y′1)

2π[(y1−y′1)2+(y3−y′3)2]

 , (2.2.25)

where it needs to be remembered that the source strength, m = −Sv, since the

plume will entrain air, making it a sink. The method of images is used to ensure

the ground is impenetrable or, v̄ = 0 when y3 = 0. This leads to the expressions for

ū and v̄:

ū(y1, y3) =
−Sv(y1 − y′1)

2π [(y1 − y′1)2 + (y3 − y′3)2]
+

−Sv(y1 − y′1)

2π [(y1 − y′1)2 + (y3 + y′3)2]

− Ω(y3 − y′3)

2π [(y1 − y′1)2 + (y3 − y′3)2]
+

Ω(y3 + y′3)

2π [(y1 − y′1)2 + (y3 + y′3)2]
(2.2.26a)

v̄(y1, y3) =
−Sv(y3 − y′3)

2π [(y1 − y′1)2 + (y3 − y′3)2]
+

−Sv(y3 + y′3)

2π [(y1 − y′1)2 + (y3 + y′3)2]

+
Ω(y1 − y′1)

2π [(y1 − y′1)2 + (y3 − y′3)2]
− Ω(y1 − y′1)

2π [(y1 − y′1)2 + (y3 + y′3)2]
. (2.2.26b)

From here, the Cauchy-Riemann equations,

ū =
∂φ̄

∂y1

=
∂ψ̄

∂y3

(2.2.27a)

v̄ =
∂φ̄

∂y3

= − ∂ψ̄
∂y1

, (2.2.27b)

are used to find:

φ̄(y1, y3) =

∫
v̄ dy3

=
−Sv
4π

[
ln
(
(y1 − y′1)2 + (y3 − y′3)2

)
+ ln

(
(y1 − y′1)2 + (y3 + y′3)2

)]
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+
Ω

2π

[
arctan

(
y3 − y′3
y1 − y′1

)
− arctan

(
y3 + y′3
y1 − y′1

)]
(2.2.28)

ψ̄(y1, y3) = −
∫
v̄ dy1

=
−Sv
2π

[
arctan

(
y3 − y′3
y1 − y′1

)
+ arctan

(
y3 + y′3
y1 − y′1

)]
Ω

4π

[
ln
(
(y1 − y′1)2 + (y3 − y′3)2

)
− ln

(
(y1 − y′1)2 + (y3 + y′3)2

)]
, (2.2.29)

where φ̄ is the velocity potential and ψ̄ is the stream function. From this, (2.2.27)

can be used as a check that all of expressions are correct.

2.2.5.2 Line Sink Vortex Combination

As mentioned above, the expressions for (ū, v̄), (2.2.26); φ̄, (2.2.28); and ψ̄,

(2.2.29), describe the flow induced by a single sink/vortex combination. Following

the discretization in Section 3.1, the law of superposition needs to be used again

to sum up the effects of the line sink/vortex combination. This simply involves

integrating these expressions along the discontinuity, which represents the plume,

and letting Sv and Ω vary with respect to s and τ .

For the velocity, v̂(y1, y3, τ), away from the discontinuity which represents

the plume there are no singularities that need to be considered. Due to this, the

expression for v̂(y1, y3, τ) is simply the integral over the plume of (2.2.26):

û(y1, y3, τ) =

∫
C

−Sv(s′, τ)(y1 − y1(s′))

2π [(y1 − y1(s′))2 + (y3 − y3(s′))2]
ds′

−
∫
C

Sv(s
′, τ)(y1 − y1(s′))

2π [(y1 − y1(s′))2 + (y3 + y3(s′))2]
ds′

−
∫
C

Ω(s′, τ)(y3 − y3(s′))

2π [(y1 − y1(s′))2 + (y3 − y3(s′))2]
ds′

+

∫
C

Ω(s′, τ)(y3 + y3(s′))

2π [(y1 − y1(s′))2 + (y3 + y3(s′))2]
ds′ (2.2.30a)

v̂(y1, y3, τ) =

∫
C

−Sv(s′, τ)(y3 − y3(s′))

2π [(y1 − y1(s′))2 + (y3 − y3(s′))2]
ds′

−
∫
C

Sv(s
′, τ)(y3 + y3(s′))

2π [(y1 − y1(s′))2 + (y3 + y3(s′))2]
ds′
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+

∫
C

Ω(s′, τ)(y1 − y1(s′))

2π [(y1 − y1(s′))2 + (y3 − y3(s′))2]
ds′

−
∫
C

Ω(s′, τ)(y1 − y1(s′))

2π [(y1 − y1(s′))2 + (y3 + y3(s′))2]
ds′, (2.2.30b)

where v̂ = (û, v̂). Thus, the velocity away from the plume can be written as,

v̂(y1, y3, τ) = (û, v̂)T = (vo 1, vo 3)T . Similarly, using the Cauchy-Riemann equations,

the expressions for the velocity potential and stream function, φ̂ and ψ̂, can be

written as:

φ̂(y1, y3, τ) =

∫
C

−Sv(s′, τ)

4π
ln
(
(y1 − y1(s′))2 + (y3 − y3(s′))2

)
ds′

+

∫
C

−Sv(s′, τ)

4π
ln
(
(y1 − y1(s′))2 + (y3 + y3(s′))2

)
ds′

+

∫
C

Ω(s′, τ)

2π

[
arctan

(
y3 − y3(s′)

y1 − y1(s′)

)
− arctan

(
y3 + y3(s′)

y1 − y1(s′)

)]
ds′

(2.2.31)

ψ̂(y1, y3, τ) =

∫
C

−Sv(s′, τ)

2π

[
arctan

(
y3 − y3(s′)

y1 − y1(s′)

)
+ arctan

(
y3 + y3(s′)

y1 − y1(s′)

)]
ds′

−
∫
C

Ω(s′, τ)

4π
ln
(
(y1 − y1(s′))2 + (y3 − y3(s′))2

)
ds′

+

∫
C

Ω(s′, τ)

4π
ln
(
(y1 − y1(s′))2 + (y3 + y3(s′))2

)
ds′. (2.2.32)

It needs to be remembered that in the above integrals, all plume points are

integrated over to find the induced velocity at any ambient air grid point. The fact

that the Cartesian grid and the plume discretization can be at different heights is

not an issue.

Switching focus to the velocity just off the plume, more needs to be considered.

Here, the velocities will be parameterized with respect to arc length. Let the position

of the plume be y1 = y1(s) and y3 = y3(s). Substituting this in (2.2.30) above,

gives a piece of velocity of interest. It also needs to be noted that when s = s′,

a singularity occurs, so that the equations above for v̂ are not valid. This means

that beyond the equations (2.2.30) above, the effect of the singularity at s on the

induced velocity needs to be considered. Thus, the induced velocity can be written
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as v = v̂ + effect of singularity.

With these expressions, (2.2.30)-(2.2.32), the flow in the ambient air system

far from the discontinuity can be described, up to a first order approximation and for

strict potential flow. The equations derived in this section can be easily implemented

in MATLAB with the discussion in Section 3.3. Additionally, the flow between the

plume and ambient air systems can be coupled, as seen in Section 2.4. Contributions

from the singularities will be discussed in the following subsection.

2.2.5.3 Decomposition of Velocity

While the expressions derived above describe the flow in the ambient air sys-

tem, for means of implementation it is necessary to obtain expressions for the normal

and tangential velocities of the ambient air at the outside edges of the plume (just

off the plume). With discretized points, this is easily done by calculating the normal

and tangential vectors, n(s, τ) = (n1, n2)T and T(s, τ) = (T1, T2)T respectively, at

each discretized point.

This is done by the equations:

T(s, τ) =
ṙ(s, τ)

|ṙ(s, τ)|
(2.2.33)

n(s, τ) = (T2,−T1)T , (2.2.34)

where r(s, τ) = (y1 p, y3 p)
T is the position vector of the centerline of the plume, and

the dot, ?̇, indicates a derivative with respect to arc length. Since the plume has

two sides and noting the geometry in Figure 2.3, the normals on the + and − sides

of the plume are opposite in sign. Thus,

n−(s, τ) = −n+(s, τ), (2.2.35)

where the subscript denotes the side of the plume.

Notationally, let the normal velocity be denoted by Vn± and the tangential

velocity by Vt±, where the ± denotes the side of the plume. One would expect

that to find the normal and tangential velocities one could simply compute the dot

product of the velocity and the desired unit vector. Although, more needs to be
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y3

y1

y2

Figure 2.3: Geometry and Notation of Moving Dyad in Upper Half-Plane

considered.

The velocity on the discontinuity is calculated on a coordinate system fixed to

the plume, as mentioned above by the parametrization with respect to arc length.

The effects from a sink will effect the normal velocity, Vn±(s, τ), and the vortex

will effect the tangential velocity, Vt±(s, τ), as seen in Figure 2.5. In the coordinate

system fixed to the plume, a velocity pointing at the plume is taken to be negative,

regardless of the side, and a velocity moving away from the plume is taken to be

positive. Meaning, a velocity in the direction of the normal vector is positive, and

a velocity opposite the direction of the normal vector is negative, see Figure 2.4 for

clarification. This was done to set all velocities going into the plume as negative.

Due to this and the coordinate system fixed to the plume, the velocity calculated on

the discontinuity does not need to be decomposed by the use of unit vectors. With

this and the information presented above, the normal and tangential velocities can

be expressed as:

Vn±(s, τ) = û(s, τ) + effect of sink at s (2.2.36)

Vt±(s, τ) = v̂(s, τ) + effect of vortex at s. (2.2.37)

In order to describe the missing singularity contribution, it is necessary to
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Figure 2.4: Decomposed Velocity Sign Convention

Figure 2.5: Velocity Induced by Sink and Vortex Respectively

discuss the theory behind the calculation of the velocity, and the effects from the

flow induced by the plume.

In the calculation of the velocity just off the plume, the integrals (2.2.30) are

taken in the principal value sense, due to the singularity that occurs when s = s′.

That is, the effect of the sink or vortex at a point s is not taken into account in the

calculation of the velocities at the spatial point (y1(s, τ), y3(s, τ)). The inclusion of

these effects will give the missing piece, and create the difference in velocities on

either side of the plume. This is induced by the sink/vortex combination, which is

represented by the contribution of the singularity itself. The effect of the sink/vortex

at the singularity is computed as follows.

Without loss, consider a perfectly vertical plume such that y1 p(s, τ) = 0 and

y3 p(s, τ) = s for 0 ≤ s ≤ 100. The interest is in the value of u and v in the limit as
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a point P goes to (0, s′), where the singularity occurs, to find the velocity induced

by the sink/vortex at the singularity at the point s′.

The velocities are considered this time without any image terms:

û(y1, y3, τ) =

∫
C

−Sv(s′, τ)y1

2π [y2
1 + (y3 − y3(s′))2]

ds′ −
∫
C

Ω(s′, τ)(y3 − y3(s′))

2π [y2
1 + (y3 − y3(s′))2]

ds′

v̂(y1, y3, τ) =

∫
C

−Sv(s′, τ)(y3 − y3(s′))

2π [y2
1 + (y3 − y3(s′))2]

ds′ +

∫
C

Ω(s′, τ)y1

2π [y2
1 + (y3 − y3(s′))2]

ds′.

In the case of a vertical plume, Vn± = û and Vt± = v̂. Considering the effects on

the normal velocity first, one has:

û(y1, y3, τ) =

∫
C

−Sv(s′, τ)y1

2π [y2
1 + (y3 − y3(s′))2]

ds′ −
∫
C

Ω(s′, τ)(y3 − y3(s′))

2π [y2
1 + (y3 − y3(s′))2]

ds′

=
−Sv(s′, τ)

2π
arctan

(
s′ − y3

y1

) ∣∣∣∣
C

+
Ω(s′, τ)

4π
ln
(
y2

1 + (y3 − s′)2
) ∣∣∣∣

C

=
−Sv(s, τ)

2π

(
arctan

(
ŷ3 − y3

y1

)
+ arctan

(
y3 − ỹ3

y1

))
+

Ω(s, τ)

4π

(
ln
(
y2

1 + (y3 − ŷ3)2
)
− ln

(
y2

1 + (y3 − ỹ3)2
))
,

where ŷ3 and ỹ3 are the endpoints of the plume and C is the simplified straight

plume. Now, taking the limit as y1 → 0+ from the right side of the plume:

lim
y1→0+

û =
−Sv(s, τ)

2π

(π
2

+
π

2

)
+

Ω(s, τ)

2π
ln

(
y3 − ŷ3

y3 − ỹ3

)
=
−Sv(s, τ)

2
+

Ω(s, τ)

2π
ln

(
y3 − ŷ3

y3 − ỹ3

)
.

To obtain the induced velocity at the singularity, the limit as ŷ3, ỹ3 → s is taken,

resulting in:

lim
y1→0+

ŷ3,ỹ3→s

û =
−Sv(s, τ)

2
+

Ω(s, τ)

2π
ln

(
y3 − s
y3 − s

)

=
−Sv(s, τ)

2
. (2.2.38)

Similarly, if the limit is instead taken as y1 → 0−, the effect of the singularity
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on the normal velocity on the left side of the plume is:

lim
y1→0−

ŷ3,ỹ3→s

û =
Sv(s, τ)

2
. (2.2.39)

The same process is used to calculate the effects on the tangential velocity.

This time one has:

v̂(y1, y3, τ) =

∫
C

−Sv(s′, τ)(y3 − y3(s′))

2π [y2
1 + (y3 − y3(s′))2]

ds′ −
∫
C

Ω(s′, τ)y1

2π [y2
1 + (y3 − y3(s′))2]

ds′

=
Sv(s

′, τ)

4π
ln
(
y2

1 + (y3 − s′)2
) ∣∣∣∣

C

+
Ω(s′, τ)

2π
arctan

(
s′ − y3

y1

) ∣∣∣∣
C

=
Sv(s, τ)

4π

(
ln
(
y2

1 + (y3 − ŷ3)2
)
− ln

(
y2

1 + (y3 − ỹ3)2
))

+
Ω(s, τ)

2π

(
arctan

(
ŷ3 − y3

y1

)
+ arctan

(
y3 − ỹ3

y1

))
.

Again, the limit as y1 → 0+, from the right side of the plume, is taken:

lim
y1→0+

v̂ =
Sv(s, τ)

2π
ln

(
y3 − ŷ3

y3 − ỹ3

)
+

Ω(s, τ)

2π

(π
2

+
π

2

)
=
Sv(s, τ)

2π
ln

(
y3 − ŷ3

y3 − ỹ3

)
+

Ω(s, τ)

2
.

To obtain the induced velocity at the singularity, the limit as ŷ3, ỹ3 → s is taken,

resulting in:

lim
y1→0+

ŷ3,ỹ3→s

v̂ =
Sv(s, τ)

2π
ln

(
y3 − s
y3 − s

)
+

Ω(s, τ)

2

=
Ω(s, τ)

2
. (2.2.40)

Similarly, if the limit is instead taken as y1 → 0−, the effect of the singularity

on the tangential velocity on the left side of the plume is:

lim
y1→0−

ŷ3,ỹ3→s

û =
−Ω(s, τ)

2
. (2.2.41)

With this contribution from the singularity and adjusting the sign in each
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case to match the normal vectors on each side of the plume, the full normal and

tangential velocities, Vn± and Vt±, can be written in the notation used above as:

Vn−(s, τ) = û(s, τ)− Sv(s, τ)

2
(2.2.42)

Vn+(s, τ) = û(s, τ)− Sv(s, τ)

2
(2.2.43)

Vt−(s, τ) = v̂(s, τ)− Ω(s, τ)

2
(2.2.44)

Vt+(s, τ) = v̂(s, τ) +
Ω(s, τ)

2
. (2.2.45)

Here, v̂ = (û, v̂) from Section 2.2.5.2 taken in the principal value sense, and the

signs have been chosen to add or subtract the effects depending on the side of the

plume and the corresponding unit vector.

One will note that the final decompositions, (2.2.42)-(2.2.45), with the in-

clusion of the effects of the singularity, are actually the decompositions of the full

velocity, v, and can be thought of as:

Vn−(s, τ) = u(s, τ) (2.2.46)

Vn+(s, τ) = u(s, τ) (2.2.47)

Vt−(s, τ) = v(s, τ) (2.2.48)

Vt+(s, τ) = v(s, τ). (2.2.49)

2.2.6 Addition of Crosswind Flow to Ambient Air

The velocity calculations, (2.2.42), do not account for the possibility of cross-

wind conditions in the ambient atmosphere. Here, let cw =
(
cw, 0

)T
, where cw

is the horizontal component of the crosswind flow.

For velocities calculated far from the discontinuity, the addition of the cross-

wind is trivial:

û = û+ cw, (2.2.50)

where û is calculated by (2.2.30).

Additional contributions to velocities calculated on the discontinuity need to
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Figure 2.6: Effect of Crosswind on Normal Velocities

be decomposed due to the plume fixed coordinate system. Thus,

Vn−(s, τ) = û(s, τ)− Sv(s, τ)

2
+ cw · n−(s, τ) (2.2.51)

Vn+(s, τ) = û(s, τ)− Sv(s, τ)

2
+ cw · n+(s, τ) (2.2.52)

Vt−(s, τ) = v̂(s, τ)− Ω(s, τ)

2
+ cw ·T(s, τ) (2.2.53)

Vt+(s, τ) = v̂(s, τ) +
Ω(s, τ)

2
+ cw ·T(s, τ), (2.2.54)

where this time v̂ is taken in the principal value sense as in Section 2.2.5.3. It

is noted that using the sign convention outlined above, a negative crosswind will

subtract from Vn+ but add to Vn−. See Figure 2.6 for clarification.

2.2.7 System Pressure Calculation

Since the ambient air system has a two-dimensional, incompressible, irrota-

tional flow, a potential flow solution for velocity is appropriate. Thus:

v1 = φy1 v3 = φy3 . (2.2.55)

As a check, we can substitute this into the definition of vorticity to obtain:

ω =
∂

∂y3

v1 −
∂

∂y1

v3

= φy1y3 − φy3y1 = 0,
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and as one would expect, substituting the potential flow notation into the definition

of incompressibility gives:

∇ · v =
∂

∂y1

v1 −
∂

∂y3

v3

= φy1y1 + φy3y3 = 0,

Laplace’s equation for the velocity potential.

To calculate the dynamic pressure, P (1), (2.2.55) is substituted into the O(σ)

momentum equations, (2.2.10). Using the momentum equation in the y1 direction

first results in:

[φy1τ + φy1φy1y1 + φy3φy1y3 ] + P (1)
y1

= 0

∂

∂y1

[
φy1τ +

1

2
(φy1)

2 +
1

2
(φy3)

2 + P (1)

]
= 0

φy1τ +
1

2
(φy1)

2 +
1

2
(φy3)

2 + P (1) = c1(y3).

From here, the constant can be found by differentiating with respect to y3 and

comparing to the momentum equation in the y3 direction. Thus:

∂

∂y3

[
φy1τ +

1

2
(φy1)

2 +
1

2
(φy3)

2 + P (1)

]
=

∂

∂y3

c1(y3).

Comparing gives the result that c1y3 = 0. Thus, c1 = const and using the

boundary conditions far away from the plume, this constant is zero. Then the

expression for the dynamic pressure can be written as:

P (1) = −
[
φτ +

1

2
(φ2)y1 +

1

2
(φ2)y3

]
(2.2.56)

P (1) = −
[
φτ +

1

2
∇(φ2)

]
. (2.2.57)

Since the two systems (ambient air and plume) are disjoint except for entrain-

ment effects, the analysis in this section completely describes the motion of the flow

outside the plume up to a first order perturbation analysis. Although not considered

here, more terms can easily be added to the expansion to gain added effects from
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vorticity and stratification. Focus now shifts to the inner solution of the boundary

layer problem.

2.3 Inner Solution

The plume system describes how the flow inside the plume evolves over time.

In this section, the equations to describe this flow are derived, including the effects

of entrainment from the ambient air system. The governing equations for the plume

system can be derived in two different ways, one of which will be presented here,

and the other is presented in Appendix A.

The equations (2.1.10) can be rescaled, noting that the majority of the velocity

is in the vertical direction. The same procedure as in the ambient air system is used

to derive an O(1) system, which is put into conservation form and integrated across

the plume. This is coupled with the assumption that each of the plume variables

have a top-hat profile in order to evaluate integrals resulting from averaging the

equations across the plume. This process results in the final form conservation laws

of interest.

The plume system is thought of as the inner solution of a boundary layer prob-

lem. The system (2.1.10) from before is used, dropping the unnecessary expansion

notation and taking ṽ = v, R̃ = R, and θ̃ = Θ. Since the focus is on the plume

system, the variables y1, v1, and v3 need to be rescaled–noting that the main part

of the velocity is in the y3 direction, see Figure 2.7. This is done by letting:

y1 = y1p + δY1
∂

∂y1

=
1

δ

∂

∂Y1

v1 = δVpV1 v3 = VpV3,

where y1 = y1 p(y3, τ) is the centerline of the plume, and δ =
df
l1

, the ratio of the fire

length scale and the length scale in the y1 direction. Additionally, let ξ0t0
ρ0CpT0l3

= Vp

and similarly
η0t20
l23ρ0

= V 2
p .

Substituting these above assumptions and the limiting case assumptions (2.1.6),
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y3,v3=O(1)
y1, v1=O(δ)

Figure 2.7: Velocity Rescaling for Inner Solution

(2.1.7), and (2.1.9) into (2.1.10) and expanding:

Rτ + (RVpV1)Y1 + (RVpV3)y3 = 0 (2.3.1a)

R
[
δVp(V1)τ + δV 2

p (V1(V1)Y1) + δV 2
p (V3(V1)y3)

]
+

1

δ

R̄T0t
2
0

l23

(
P

(H)
Y1

+ βP
(H1)
Y1

+ σP
(1)
Y1

)
= V 2

p

(
1

δ
T̃11Y1 + T̃13y3

)
(2.3.1b)

R
[
Vp(V3)τ + V 2

p (V1(V3)Y1) + V 2
p (V3(V3)y3)

]
+
R̄T0t

2
0

l23

(
P (H)
y3

+ βP (H1)
y3

+ σP (1)
y3

)
= −t

2
0g

l3
R

+ V 2
p

(
1

δ
T̃31Y1 + T̃33y3

)
(2.3.1c)

R [Θτ + VpV1ΘY1 + VpV3Θy3 ]

−γ − 1

γ

[
P (H)
τ + βP (H1)

τ + σP (1)
τ + VpV1

(
P

(H)
Y1

+ βP
(H1)
Y1

+ σP
(1)
Y1

)
+ VpV3

(
P (H)
y3

+ σP (1)
y3

)]
= VpQ̃+ Vp

(
1

δ
q̃1Y1 + q̃3y3

)
(2.3.1d)

P (H) + βP (H1) + σP (1) = RΘ. (2.3.1e)
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Time is rescaled such that τ̃ = Vpτ , which means that ∂
∂τ̃

= 1
Vp

∂
∂τ

. The

Reynolds stresses and heat flux terms need to be scaled just as the velocity inside

the plume was, noting the majority of the entrainment is in the Y1 direction:

T̃11 = T̂11 T̃13 = T̂13 T̃31 = δT̂31

T̃33 = δT̂33 q̃1 = δq̂1 q̃3 = δq̂3.

Substituting these new scalings into (2.3.1a) results in the reduction:

Rτ̃ + (RV1)Y1 + (RV3)y3 = 0.

Next, (2.3.1b) reduces to:

RV 2
p δ [(V1)τ̃ + (V1(V1)Y1) + (V3(V1)y3)]

+
1

δ

R̄T0t
2
0

l23

(
P

(H)
Y1

+ βP
(H1)
Y1

+ σP
(1)
Y1

)
= V 2

p

(
1

δ
T̂11Y1 + T̂13y3

)
.

Similarly for V3, (2.3.1c), reduces to:

RV 2
p [(V3)τ̃ + (V1(V3)Y1) + (V3(V3)y3)]

+
R̄T0t

2
0

l23

(
P (H)
y3

+ βP (H1)
y3

+ σP (1)
y3

)
= −t

2
0g

l3
R + V 2

p

(
T̂31Y1 + δT̂33y3

)
,

and (2.3.1d) reduces to:

RVp [Θτ̃ + V1ΘY1 + V3Θy3 ]− Vp
γ − 1

γ

[
P

(H)
τ̃ + βP (H1)

τ + σP
(1)
τ̃

+ V1

(
P

(H)
Y1

+ βP
(H1)
Y1

+ σP
(1)
Y1

)
+ V3

(
P (H)
y3

+ βP (H1)
y3

+ σP (1)
y3

)]
= VpQ̃+ Vp (q̂1Y1 + δq̂3y3) .

Finally, (2.3.1e) becomes:

P (H) + βP (H1) + σP (1) = RΘ.
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Thus, the plume system becomes:

Rτ̃ + (RV1)Y1 + (RV3)y3 = 0

(2.3.2a)

RV 2
p δ [(V1)τ̃ + (V1(V1)Y1) + (V3(V1)y3)]

+
1

δ

R̄T0t
2
0

l23

(
P

(H)
Y1

+ βP
(H1)
Y1

+ σP
(1)
Y1

)
= V 2

p

(
1

δ
T̂11Y1 + T̂13y3

)
(2.3.2b)

RV 2
p [(V3)τ̃ + (V1(V3)Y1) + (V3(V3)y3)]

+
R̄T0t

2
0

l23

(
P (H)
y3

+ βP (H1)
y3

+ σP (1)
y3

)
= −t

2
0g

l3
R + V 2

p

(
T̂31Y1 + δT̂33y3

)
(2.3.2c)

RVp [Θτ̃ + V1ΘY1 + V3Θy3 ]− Vp
γ − 1

γ

[
P

(H)
τ̃ + βP

(H1)
τ̃ + σP

(1)
τ̃

+ V1

(
P

(H)
Y1

+ βP
(H1)
Y1

+ σP
(1)
Y1

)
+ V3

(
P (H)
y3

+ βP (H1)
y3

+ σP (1)
y3

)]
= VpQ̃+ Vp (q̂1Y1 + δq̂3y3)

(2.3.2d)

P (H) + βP (H1) + σP (1) = RΘ.

(2.3.2e)

Now let δ → 0 and use (2.2.7) to get Py3 = −β + σP
(1)
y3 and PY1 = σP

(1)
Y1

. The

approximations RiMa2 � 1 (β � 1) and σ � 1 are used, which is similar to taking

a first approximation (keep O(1) terms). Upon substituting and rearranging, the

system reduces to:

Rτ̃ + (RV1)Y1 + (RV3)y3 = 0 (2.3.3a)

P
(1)
Y1

= V 2
p T̂11Y1 (2.3.3b)

RV 2
p [(V3)τ̃ + (V1(V3)Y1) + (V3(V3)y3)]−

R̄T0t
2
0

l23
β = −t

2
0g

l3
R + V 2

p T̂31Y1 (2.3.3c)

RVp [Θτ̃ + V1ΘY1 + V3Θy3 ] = VpQ̃+ Vpq̂1Y1 (2.3.3d)

P (H) = RΘ. (2.3.3e)
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For the balances in the limiting case, choose V 2
p =

gt20
l3

, and additionally using

the definition of β and substituting into (2.3.3), the system becomes:

Rτ̃ + (RV1)Y1 + (RV3)y3 = 0 (2.3.4a)

P
(1)
Y1

=
gt20
l3
T̂11Y1 (2.3.4b)

R [(V3)τ̃ + (V1(V3)Y1) + (V3(V3)y3)]− 1 = −R + T̂31Y1 (2.3.4c)

R [Θτ̃ + V1ΘY1 + V3Θy3 ] = Q̃+ q̂1Y1 (2.3.4d)

P (H) = RΘ. (2.3.4e)

2.3.1 Conservation Laws

Equations (2.3.4c) and (2.3.4d) can be written in conservation form, using

(2.3.4a) to simplify. Thus, the system becomes:

Rτ̃ + (RV1)Y1 + (RV3)y3 = 0 (2.3.5a)

P
(1)
Y1

=
gt20
l3
T̂11Y1 (2.3.5b)

(RV3)τ̃ + (RV1V3)Y1 + (RV 2
3 )y3 − 1 = −R + T̂31Y1 (2.3.5c)

(RΘ)τ̃ + (RV1Θ)Y1 + (RV3Θ)y3 = Q̃+ q̂1Y1 (2.3.5d)

P (H) = RΘ. (2.3.5e)

A top-hat profile is assumed for R, Θ, and V3. A top-hat profile makes the

assumption that a variable, ?, has approximately a constant distribution across some

space. Here this space is taken as the plume. So in this case, a top-hat profile for R

assumes that R is constant across the plume (constant in Y1) for a given height y3.

See Figure 2.8 for the shape of the distribution. The top-hat assumption has a rich

history in fluid dynamics and was made well known in the application to buoyant

plumes by Morton et al. [55]. Although it seems to be a simple assumption, in

the case of a narrow plume, the assumption is valid and close to what happens

physically.

An alternate derivation of the conservation laws using a flux argument param-

eterized for a curvilinear coordinate system is presented in Appendix A and will be
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Figure 2.8: Top-Hat Profile

used in the implementation in Chapter 3.

The equations are integrated in terms of Y1, where it is noted that:

∫ y1p+ b
2

y1p− b2

• dy1 =
1

δ

∫ b
2δ

− b
2δ

• dY1
∼=

1

δ

∫ ∞
−∞
• dY1,

where b is the width of the plume. Upon integrating, (2.3.5a) can be written as:

∫ y1p+ b
2

y1p− b2

Rτ̃ + (RV1)Y1 + (RV3)y3 dY1 = 0.

The derivatives are moved outside the integrals resulting in:

∂

∂τ̃

∫ y1p+ b
2

y1p− b2

R dY1 −R
∣∣∣∣
y1 p+ b

2

(
y1 p τ̃ +

bτ̃
2

)
+R

∣∣∣∣
y1 p− b2

(
y1 p τ̃ −

bτ̃
2

)

+

∫ y1p+ b
2

y1p− b2

(RV1)Y1 dY1 +
∂

∂y3

∫ y1p+ b
2

y1p− b2

RV3 dY1 −RV3

∣∣∣∣
y1 p+ b

2

(
y1 p y3 +

by3
2

)
+RV3

∣∣∣∣
y1 p− b2

(
y1 p y3 −

by3
2

)
= 0,
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and finally simplifying one obtains:

(Rb)τ̃ + (RV3b)y3 = −(RV1)

∣∣∣∣y1p+ b
2

y1p− b2

+R

∣∣∣∣
y1 p+ b

2

(
y1 p τ̃ +

bτ̃
2

)
−R

∣∣∣∣
y1 p− b2

(
y1 p τ̃ −

bτ̃
2

)
+RV3

∣∣∣∣
y1 p+ b

2

(
y1 p y3 +

by3
2

)
−RV3

∣∣∣∣
y1 p− b2

(
y1 p y3 −

by3
2

)
.

Thus,

(Rb)τ̃ + (bRV3)y3 = Sm, (2.3.6)

where:

Sm = −(RV1)

∣∣∣∣y1p+ b
2

y1p− b2

+R

∣∣∣∣
y1 p+ b

2

(
y1 p τ̃ +

bτ̃
2

)
−R

∣∣∣∣
y1 p− b2

(
y1 p τ̃ −

bτ̃
2

)
+RV3

∣∣∣∣
y1 p+ b

2

(
y1 p y3 +

by3
2

)
−RV3

∣∣∣∣
y1 p− b2

(
y1 p y3 −

by3
2

)
.

One will notice that the source term, Sm, is comprised of several terms. The

first term, −(RV1)

∣∣∣∣y1p+ b
2

y1p− b2

, represents the flux of mass inside the plume moving to-

wards or away from the centerline, y1 p, depending on the sign. The remaining terms,

when combined, are recognized as density of the gas times the material derivatives

of y1 p ± b
2
, the velocity of the control volume. With this, Sm can be written as:

R

(
−V1 +

D

Dt

(
y1p +

b

2

)) ∣∣∣∣
y1p+ b

2

+R

(
V1 −

D

Dt

(
y1p −

b

2

)) ∣∣∣∣
y1p− b2

.

This is the net mass flux into the plume, and with this (2.3.6) is equivalent to

(A.2.2).

When (2.3.5c) is integrated and simplified, one obtains:

(RV3b)τ̃ +
(
RV 2

3 b
)
y3

= −(RV1V3)

∣∣∣∣y1p+ b
2

y1p− b2

+ b−Rb+ T̂31

∣∣∣∣y1p+ b
2

y1p− b2

+RV3

∣∣∣∣
y1 p+ b

2

(
y1 p τ̃ +

bτ̃
2

)
−RV3

∣∣∣∣
y1 p− b2

(
y1 p τ̃ −

bτ̃
2

)



63

+RV 2
3

∣∣∣∣
y1 p+ b

2

(
y1 p y3 +

by3
2

)
−RV 2

3

∣∣∣∣
y1 p− b2

(
y1 p y3 −

by3
2

)
.

Thus,

(RV3b)τ̃ + (RV 2
3 b)y3 = bf + SM , (2.3.7)

where:

f = 1−R

SM = T̂31

∣∣∣∣y1p+ b
2

y1p− b2

− (RV1V3)

∣∣∣∣y1p+ b
2

y1p− b2

+RV3

∣∣∣∣
y1 p+ b

2

(
y1 p τ̃ +

bτ̃
2

)
−RV3

∣∣∣∣
y1 p− b2

(
y1 p τ̃ −

bτ̃
2

)
+RV 2

3

∣∣∣∣
y1 p+ b

2

(
y1 p y3 +

by3
2

)
−RV 2

3

∣∣∣∣
y1 p− b2

(
y1 p y3 −

by3
2

)
.

Again, one will notice that the source term, SM , is made up of several terms.

The first term is the momentum added to the plume through turbulent mixing. The

remainder of the terms combine as before to give the net momentum flux into the

plume. As it is written above, the remainder of the terms are seen as the control

volume velocity, and again, (2.3.7) is equivalent to (A.3.6).

Finally, (2.3.5d) is integrated and simplified, so that one obtains:

(RΘb)τ̃ + (RV3Θb)y3 = −(RV1Θ)

∣∣∣∣y1p+ b
2

y1p− b2

+ bQ̃+ q̂1

∣∣∣∣y1p+ b
2

y1p− b2

+RΘ

∣∣∣∣
y1 p+ b

2

(
y1 p τ̃ +

bτ̃
2

)
−RΘ

∣∣∣∣
y1 p− b2

(
y1 p τ̃ −

bτ̃
2

)
+RV3Θ

∣∣∣∣
y1 p+ b

2

(
y1 p y3 +

by3
2

)
−RV3Θ

∣∣∣∣
y1 p− b2

(
y1 p y3 −

by3
2

)
.

Thus,

(bRΘ)τ̃ + (bRV3Θ)y3 = bH + ST , (2.3.8)



64

where:

H = Q̃

ST = q̂1

∣∣∣∣y1p+ b
2

y1p− b2

− (RV1Θ)

∣∣∣∣y1p+ b
2

y1p− b2

+RΘ

∣∣∣∣
y1 p+ b

2

(
y1 p τ̃ +

bτ̃
2

)
−RΘ

∣∣∣∣
y1 p− b2

(
y1 p τ̃ −

bτ̃
2

)
+RV3Θ

∣∣∣∣
y1 p+ b

2

(
y1 p y3 +

by3
2

)
−RV3Θ

∣∣∣∣
y1 p− b2

(
y1 p y3 −

by3
2

)
.

The first term of ST , is the thermal energy added to the plume through tur-

bulent mixing. The remaining terms combine to give the net thermal energy flux

into the plume. And again, (2.3.8) is equivalent to (A.5.2).

Since the variables in (2.3.5e) are either top-hat variables or independent of

Y1, the equation does not change. Thus, the equations have been reduced to the

system:

(Rb)τ̃ + (bRV3)y3 = Sm (2.3.9a)

P (1)

∣∣∣∣y1p+ b
2

y1p− b2

=
gt20
l3
T̂11

∣∣∣∣y1p+ b
2

y1p− b2

(2.3.9b)

(bRV3)τ̃ + (bRV 2
3 )y3 = bf + SM (2.3.9c)

(bRΘ)τ̃ + (bRV3Θ)y3 = bH + ST (2.3.9d)

P (H) = RΘ. (2.3.9e)

2.3.2 Vorticity Transport Equation

Employing the same scalings that were used to rescale variables to describe

the plume, the expression for vorticity is rescaled into the plume as well. So,

ω = v1 y3 − v3 y1 ,
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in the plume becomes:

ωp = Vp

(
δV1 y3 −

1

δ
V3Y1

)
≈ δV1 y3 −

1

δ
V3Y1

∼ −1

δ
V3Y1 =

1

δ
Ω, (2.3.10)

where the final approximation is used because δ � 1. With this, only the momentum

equation for V3, (2.3.2c) is needed:

RV 2
p [V3 τ̃ + V1V3Y1 + V3V3 y3 ] +

R̄T0t
2
0

l23

(
P (H)
y3

+ RiMa2P (H1)
y3

+ Ma2P (1)
y3

)
=

− t20g

l3
R + V 2

p

(
T̂31Y1 + δT̂33 y3

)
. (2.3.11)

Then, taking the Y1 derivative:

RY1V
2
p [V3 τ̃ + V1V3Y1 + V3V3 y3 ]

+RV 2
p [V3 τ̃Y1 + V1Y1V3Y1 + V1V3Y1Y1 + V3Y1V3 y3 + V3V3 y3Y1 ]

+
R̄T0t

2
0

l23

(
P

(H)
y3 Y1

+ RiMa2P
(H1)
y3 Y1

+ Ma2P
(1)
y3 Y1

)
= −t

2
0g

l3
RY1

+ V 2
p

(
T̂31Y1Y1 + δT̂33 y3Y1

)
. (2.3.12)

With this, to derive the vorticity equation, one takes −1
δ

times (2.3.12) while using

(2.3.10) and (2.3.11) to simplify. One obtains:

1

δ
RV 2

p

[
Ωτ̃ + (V1Ω)Y1 + (V3Ω)y3

]
= −1

δ

RY1

R

R̄T0t
2
0

l23

(
P (H)
y3

+ RiMa2P (H1)
y3

+ Ma2P (1)
y3

)
+

1

δ

RY1

R
V 2
p

(
T̂31Y1 + δT̂33 y3

)
+

1

δ

R̄T0t
2
0

l23

(
P

(H)
y3 Y1

+ RiMa2P
(H1)
y3 Y1

+ Ma2P
(1)
y3 Y1

)
−
V 2
p

δ

(
T̂31Y1Y1 + δT̂33 y3Y1

)
.

With V 2
p =

gt20
l3

, PY1 = σP
(1)
Y1

, P
(H1)
y3 = −β + σP

(1)
y3 , RiMa2 = gl3

R̄T0
, and Ma2 =
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l23
R̄T0t20

one obtains:

1

δ
R
[
Ωτ̃ + (V1Ω)Y1 + (V3Ω)y3

]
=

1

δ

RY1

R
− 1

δ

l3
gt20

RY1

R
P (1)
y3

+
1

δ

RY1

R

(
T̂31Y1 + δT̂33 y3

)
+

1

δ

l3
gt20

P
(1)
y3Y1
− 1

δ

(
T̂31Y1Y1 + δT̂33 y3Y1

)
,

and for δ � 1 one obtains the following ordered equations:

O

(
1

δ

)
: R

[
Ωτ̃ + (V1Ω)Y1 + (V3Ω)y3

]
=
RY1

R
− l3
gt20

RY1

R
P (1)
y3

+
RY1

R
T̂31Y1

+
l3
gt20

P
(1)
y3Y1
− T̂31Y1Y1 (2.3.13)

O(1) : 0 =
RY1

R
T̂33 y3 − T̂33 y3Y1 . (2.3.14)

Only the largest contribution to the vorticity in the plume system will be

considered. The O
(

1
δ

)
equation can be rewritten in conservative form, viz.:

(RΩ)τ̃ + (RΩV1)Y1 + (RΩV3)y3 = −ΩRV1Y1 − ΩRV3 y3 +
RY1

R

− l3
gt20

RY1

R
P (1)
y3

+
RY1

R
T̂31Y1 +

l3
gt20

P
(1)
y3Y1
− T̂31Y1Y1 . (2.3.15)

Following the same procedure as for the other conservation laws, (2.3.15) is

integrated across the plume (with respect to Y1). Thus,

∫ y1p+ b
2

y1p− b2

(RΩ)τ̃ + (RΩV1)Y1 + (RΩV3)y3 dY1 =∫ y1p+ b
2

y1p− b2

−ΩRV1Y1 − ΩRV3 y3 +
RY1

R
− l3
gt20

RY1

R
P (1)
y3

+
RY1

R
T̂31Y1 dY1

+

∫ y1p+ b
2

y1p− b2

l3
gt20

P
(1)
y3Y1
− T̂31Y1Y1 dY1.

Upon moving the derivatives outside the integrals and simplifying yields:

(RbΩ)τ̃ + (RbΩV3)y3 = RΩ

∣∣∣∣
y1 p+ b

2

(
y1 p τ̃ +

bτ̃
2

)
−RΩ

∣∣∣∣
y1 p− b2

(
y1 p τ̃ −

bτ̃
2

)
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+RΩV3

∣∣∣∣
y1 p+ b

2

(
y1 p y3 +

by3
2

)
−RΩV3

∣∣∣∣
y1 p− b2

(
y1 p y3 −

by3
2

)

−RΩ

[
−V3

∣∣∣∣
y1 p+ b

2

(
y1 p y3 +

by3
2

)
+ V3

∣∣∣∣
y1 p− b2

(
y1 p y3 −

by3
2

)]

− 2RbΩV1 −RΩ(bV3)y3 +
l3
gt20

P (1)
y3

∣∣∣∣y1p+ b
2

y1p− b2

− T̂31Y1

∣∣∣∣y1p+ b
2

y1p− b2

.

Thus,

(RbΩ)τ̃ + (RbΩV3)y3 = G+ SG, (2.3.16)

where:

G = −2RbΩV1 −RΩ(bV3)y3

−RΩ

[
−V3

∣∣∣∣
y1 p+ b

2

(
y1 p y3 +

by3
2

)
+ V3

∣∣∣∣
y1 p− b2

(
y1 p y3 −

by3
2

)]

SG = RΩ

∣∣∣∣
y1 p+ b

2

(
y1 p τ̃ +

bτ̃
2

)
−RΩ

∣∣∣∣
y1 p− b2

(
y1 p τ̃ −

bτ̃
2

)
+RΩV3

∣∣∣∣
y1 p+ b

2

(
y1 p y3 +

by3
2

)
−RΩV3

∣∣∣∣
y1 p− b2

(
y1 p y3 −

by3
2

)

+
l3
gt20

P (1)
y3

∣∣∣∣y1p+ b
2

y1p− b2

− T̂31Y1

∣∣∣∣y1p+ b
2

y1p− b2

.

The last two terms of SG represent the vorticity added to the plume through

system pressure gradients and entrainment. The remaining terms combine to give

the net vorticity flux into the plume. And again, (2.3.16) is equivalent to (A.6.11).

Thus, the system of equations that will be used to describe the plume system

becomes:

(Rb)τ̃ + (bRV3)y3 = Sm (2.3.17a)

P (1)

∣∣∣∣y1p+ b
2

y1p− b2

=
gt20
l3
T̂11

∣∣∣∣y1p+ b
2

y1p− b2

(2.3.17b)

(bRV3)τ̃ + (bRV 2
3 )y3 = bf + SM (2.3.17c)

(bRΘ)τ̃ + (bRV3Θ)y3 = bH + ST (2.3.17d)
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(RbΩ)τ̃ + (RbΩV3)y3 = G+ SG (2.3.17e)

P (H) = RΘ. (2.3.17f)

Equation (2.3.17a) can be solved for Rb, resulting in Rb = M, which can be

solved for R⇒ R = M
b

. Similarly, equation (2.3.17d) can be solved for RbΘ. Thus,

RbΘ = E, which can be solved for Θ ⇒ Θ = E
M

. Then using (2.3.17f) to get

P (H) = E
b
, which can be solved for b ⇒ b = E

P (H) . In the same manner, equations

(2.3.17c) and (2.3.17e) can be solved for RbV3 and RbΩ, resulting in expressions for

V3 and Ω respectively.

2.4 Entrainment Model

As mentioned earlier, the assumption is made that the faster the plume moves

relative to the ambient air, the faster the plume entrains air. This is done by simply

letting v±in/out(s, τ) represent the velocity at which air is entrained into the plume,

where:

v±in/out(s, τ) = Ain/out · |V (s, τ)− Vt±(s, τ)|. (2.4.1)

Here, ± represents the plus or minus side of the plume, noting the geometry and

notation in Figure 2.9, and in/out denotes whether the rate represents the air mixing

into (or out of) the plume. Also, Ain/out is a constant representing the strength of

mixing following [55]; V (s, τ) is the velocity inside the plume, along the centerline

of the plume; and Vt±(s, τ) is the tangential velocity outside the plume (just off

the plume). The expression (2.4.1) is substituted into the right-hand side of the

conservation laws from Appendix A and is used with the numerical scheme to solve

the system of equations from above, simplifying the complexity of the source terms.

Clearly, one can see that this simple model for the entrainment rate does

exactly what the paradigm states: the faster the plume moves relative to the ambient

air (or visa versa), the faster the plume will entrain the air.
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y3

y1

y2

Figure 2.9: Notation and Geometry of the Plume

2.5 Conclusions

As derived in the previous sections, several simplifying assumptions have been

made to reduce the problem of describing the flow inside and outside the fire plume.

It is apparent that the two systems are disjoint, except for coupling due to en-

trainment as claimed before. Also, the size of the expansion parameters have been

verified, which allows the perturbation analysis whose one term expansion has led

to the simpler system that can be solved to determine the motion of the flow. As

discussed, more terms can be added to account for effects due to vorticity, stratifi-

cation of the atmosphere, etc. However, as more terms are added, the complexity of

the problem is greatly increased. Effects such as these may be examined in future

work.

Asymptotic expansions of the properties in the ambient air were used to de-

termine that the flow in the ambient air system is two-dimensional, irrotational, and

incompressible, allowing for a potential flow solution of velocity at points far away

from the discontinuity that represents the plume. In addition to this, using the

disjointedness of the two systems, the flow in the ambient air on the discontinuity

was derived using a Biot-Savart integral.

The conservation laws in the plume system were derived in two different ways,

and both approaches have been shown to be equivalent. In Cartesian coordinates,
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an asymptotic approximation for small δ was used in conjunction with the assump-

tion of a top-hat profile for all plume variables to evaluate the integrals that result

from averaging the equations across the plume. In curvilinear coordinates, the con-

servation laws were derived using a control volume derivation outlined in Appendix

A. Consistent with the paradigm, the source terms for entrainment were replaced

with simple models based on the relative speed of the plume and ambient air, which

greatly reduces the complexity of solving the plume system. The next step will be

to implement these equations and solve them numerically to obtain solutions for

different scenarios.



CHAPTER 3

Implementation of Equations for Plume Model

The equations from Chapter 2 can be implemented in MATLAB, or any other com-

puter language, in a time evolving iteration. Information presented in this chapter

includes the discretization of the domains, the numerical scheme needed to solve

the conservation laws for the plume system, the implementation of velocity in the

ambient air, boundary conditions, and the method of updating the position of the

plume. The ideas behind the algorithms are presented here, while the MATLAB

code is available upon request.

It first needs to be noted that the plume need not be vertical. In fact, a

perfectly vertical plume is of little interest; it is much more interesting to see the

plume react to its surroundings. When the plume starts to bend and respond to

the ambient wind, a parameterization with respect to the height, y3, is not most

effective. Due to this, from here on, it will be assumed that all plume calculations

are parametrized with respect to the arc length, s, unless stated otherwise. This

requires a simple change of variables, and the derivation is described in Appendix

A.

3.1 Discretization

To implement the equations in MATLAB, the domain needs to be discretized,

creating computational nodes on the plume and in the ambient air system. The

centerline of the plume is taken as (y1 p(s, τ), y3 p(s, τ)) and following Figure 3.1,

nodes are placed along this curve at equally spaced increments of arc length, ∆s.

At each of these nodes, the properties of the plume (density, temperature, velocity,

width, etc.) are assumed to be functions of (s, τ). In addition, this discretization

is also used for the calculation of the velocity off the plume induced by the plume,

which was discussed above. This is because the normal or tangential velocity just

off the plume is computed on the coordinate system fixed to the plume at point s,

or in terms of the discretization, at a set of specific arc length points associated with

71
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Figure 3.1: Discretization of Plume

the plume.

To create a discretized domain in the ambient air system, a simple Cartesian

grid is employed. The nodes are equally spaced in the computational domain, where

each of the properties (density, temperature, velocity, pressure, etc.) of the ambient

air system are taken to be functions of (y1, y3, τ). For example, the velocity in the

ambient air system, far from the plume is taken to be v̂(y1, y3, τ). This grid is used

for the purpose of plotting arrows to indicate the motion of flow, and will allow for

stratification of density, temperature, and pressure.

3.2 Implementation of Conservation Laws Inside the Plume

While the ideas of the conservation laws from Section 2.3.2 are used in the

implementation, these conservation laws, (2.3.17), were derived for a nearly vertical

plume. As mentioned above, this is not the case of interest. However, the conser-

vation laws from Appendix A generalize the derivation, allowing a nearly arbitrary

plume position in a curvilinear coordinate system fixed to the plume. These equa-

tions are discretized to calculate five key properties; these properties are the width

of the plume, density, velocity, temperature, and vorticity inside the plume. The

calculation of these properties depends on what is happening throughout the entire

domain, including the ambient air system through entrainment, as mentioned in
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Section 2.4. With all of these properties together, the flow inside the plume can be

completely described.

To calculate the key properties, difference equations are used to approximate

the derivatives in the conservation equations. Special care needs to be taken when

numerically solving these conservation laws. Since after implementation the velocity

inside the plume is allowed to change signs, a simple upwind (or downwind) scheme

would not accurately solve the problem at hand. This is due to the direction of

the propagation of information and the CFL condition for methods solving partial

differential equations [70]. A simple diffusive scheme is adopted, keeping in mind

the desire to minimize computation cost. The decision process and justification

is outlined in Appendix B. Additionally, in order to keep the model simple, the

source terms of entrainment are replaced with a simplified model, consistent with

the paradigm, as shown in Section 2.4.

3.2.1 Implementation of Diffusive Scheme

Upon examining the choices of solution method in Appendix B, it was decided

that the conservation laws from Appendix A should be solved as a coupled system.

To achieve the system in terms of elementary variables, as discussed in Appendix B,

the conservation of mass equation is used to simplify the other conservation laws.

With this, the system of equations of interest is:

(Rb)τ + (RbV )s = Sm (3.2.1a)

Vτ +

(
1

2
V 2

)
s

=
1

Rb

(
SM + (1−R)g̃b

∂y3

∂s
− V Sm

)
(3.2.1b)

Θτ + (ΘV )s =
1

RbCp

(
ST + bQ̃−ΘCpSm

)
+ VsΘ (3.2.1c)

Ωτ + (V Ω)s =
1

b
SG. (3.2.1d)

One notes that with advection type equations, the flux dictates which simple

schemes (upwind or downwind) can be used. In the case at hand, a flux in either

direction can be expected due to implementation techniques. Although, a positive

flux moving up the plume is used the majority of the time. Thus, a simple first
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order scheme will be used with conditions on whether an upwind or downwind is

needed. As written, it appears as though the velocity equation is solved separate

from the remaining three conservation equations. This is not the case. All equations

are solved simultaneously as a fully coupled set of equations. The description below

was written in this way because the velocity equation requires additional techniques

for solution and it is easier to explain.

To implement the diffusive scheme on the PDE system (3.2.1), following

Boudin [15], a second order diffusive term is added to (3.2.1b), giving:

Vτ + (
1

2
V 2)s = ε

1

Rb
Vss + fv(s, τ), (3.2.2)

where ε is a small parameter, here taken to be ε = 0.005, and fv(s, τ) is the right-

hand side of (3.2.1b). In this system of equations, (3.2.1), which is different than

the applications of Boudin [15], the added diffusive term has been found to damp

oscillations that result from the ill-behaved system. A sufficiently large ε is chosen

to damp the oscillations from growing, but the choice needs to be small enough as

to not damp the solution. Again, justification of the choice to add the diffusive term

can be seen in Appendix B. Since a simple first order scheme is desired in this work,

upwinding as well as downwinding in the spatial domain will be used when the flux

deems appropriate. A simple forward differencing will be used in time to obtain the

general scheme for (3.2.1b):

V τ+1
s = V τ

s −
∆t

∆s

[
Fv(V

τ
s , V

τ
s+1)− Fv(V τ

s−1, V
τ
s )
]

+ ε
∆t

∆s2

1

Rτ
sb
τ
s

(
V τ
s−1 − 2V τ

s + V τ
s+1

)
+ f τv s, (3.2.3)

where,

Fv(ul, ur) =

 1
2
u2
l V τ

s+1 + V τ
s ≥ 0

1
2
u2
r V τ

s+1 + V τ
s < 0,

ul, ur is the argument of Fv, V (s, τ) ≈ V τ
s , fv(s, τ) = f τv s, R(s, τ) ≈ Rτ

s , and

b(s, τ) ≈ bτs . It is seen that the scheme (3.2.3) is explicit, which allows for an

expression for V τ+1
s to be found.
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The remaining equations, (3.2.1a), (3.2.1c), and (3.2.1d), each can be easily

written in general as the PDE:

∂ζ

∂τ
+
∂g(ζ)

∂s
= f(s, τ), (3.2.4)

where it is seen that ζ = Rb, Θ, and Ω; g(ζ) = ζV ; and f(s, τ) is the right-hand

side of (3.2.1a), (3.2.1c), and (3.2.1d), respectively for the conservation of mass and

temperature, and vorticity equations. The equation (3.2.4) will be solved by using

upwind or downwind, depending on the sign of the flux. This will be done again

using the simple condition such that:

Zτ+1
s = Zτ

s −
∆t

∆x
(Fζ(Z

τ
s , Z

τ
s+1)− Fζ(Zτ

s−1, Z
τ
s )) + f τs , (3.2.5)

where,

Fζ(ul, ur) =

 ulV
τ
l V τ

s+1 + V τ
s ≥ 0

urV
τ
r V τ

s+1 + V τ
s < 0,

ul, ur is the argument of Fζ , ζ(s, τ) ≈ Zτ
s , and f(s, τ) = f τs is the right-hand side

of (3.2.1a), (3.2.1c), and (3.2.1d) respectively. This time a diffusive term is not

needed because all difficulties and oscillations that occur in this system stem from

the velocity equation. Thus, adding a diffusive term here would only damp the

solutions.

From here, the schemes can be easily implemented to solve the system of

equations. Note, although it is not written in a coupled form, the system of equations

(3.2.1) will be solved as a fully coupled system using the schemes (3.2.3) and (3.2.5).

3.2.2 Initial and Boundary Conditions

As of yet, nothing has been said about the initial and boundary conditions to

properly close the systems of equations (3.2.1). For now, the choice of the conditions

will provide fire behavior to the system in the absence of a model for fire dynamics.
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The initial conditions for the plume properties are:

R(s, 0) =

 Ξ s = 0

1 s > 0
θ(s, 0) =

 1
Ξ

s = 0

1 s > 0

V (s, 0) =

 1 s = 0

0 s > 0
Ω(s, 0) =

 Ξ̃ s = 0

0 s > 0,

where 0 ≤ Ξ ≤ 1 is a constant and |Ξ̃| � 1 is a random small value. These initial

conditions physically state that inside the point source fire at the ground, the air is

hot and less dense than the air outside the fire.

The computational boundary condition at the top of the computational do-

main allows the air in the plume moving up to escape out of the top of the plume,

which is achieved automatically by the upwind scheme. If the air is moving down

at the top of the computational domain, the flux, F , is specified such that ambient

air is pulled in. The majority of the time, the boundary condition at the top of

the domain is not needed. When the plume reaches the height of the computation

domain, the former condition is used.

At the fire point at the bottom of the plume, the boundary condition used is:

R(0, τ) = Ξ θ(0, τ) =
1

Ξ

V (0, τ) = 1 + Ξ̄(τ) Ω(0, τ) = Ξ̃(τ),

where again, 0 ≤ Ξ ≤ 1 is a constant, |Ξ̃| � 1 is a random small value, and |Ξ̄| < 1

is a random value. These random values are normally distributed and are chosen at

random time increments. The prescribed values of velocity and vorticity are used

to mimic the behavior of how fire “dances” with puffing and curling effects due to

the absence of fire dynamics in the calculations.

Numerically, when the above scheme is implemented, the solution inside the

plume is only computed up to the top of the plume, which explains why a positive

flux is expected and the boundary condition at the top of the computation domain

is rarely used. Anything above the top of the plume is assumed to be well mixed
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ambient air. The top of the plume is calculated by tracking the position of a particle

released into the fire. This is computed at each time step by solving the simple ODE:

∂stop(τ)

∂t
= V (stop(τ), τ),

which can be easily solved using a difference equation giving, stop(τ + 1) = stop(τ) +

V (stop(τ), τ)∆t. This basically tracks a particle in the plume and calculates the

distance it travels in time. Since the velocity is calculated on the discretized grid,

the velocity needs to be interpolated to find its value at stop. The top of the plume

is an integer value, so a tolerance is set and once the particle reaches the tolerance,

the integer value of the plume top is incremented.

With this idea and the ideas above, the flow inside the plume can be completely

described, although the flow depends on the flow in the ambient air, which will be

discussed in the coming section. The equations can be easily implemented into

MATLAB or any other computer language to create the computational model to

describe this flow.

3.3 Implementation of Velocity in Ambient Air

The flow induced by the plume is implemented as a Riemann sum representing

a vortex sheet/line sink combination. Once the plume is discretized, each node in

the plume represents a point vortex/sink combination. When the effects of each

computation node is summed, the result is an approximation to the vortex sheet/line

sink combination as needed.

The implementation of the velocity in the ambient air simply consists of ap-

proximating the integrals from the derivations in Section 2.2.5 as sums and distin-

guishing between the velocity far from the plume and the velocity near the plume.

Upon considering the velocity far from the plume first, one obtains the follow-

ing sums:

û(y1, y3, τ) =
N∑
s′=1

−Sv(s′, τ)(y1 − y1 p(s
′))

2π [(y1 − y1 p(s′))2 + (y3 − y3 p(s′))2]
∆s



78

−
N∑
s′=1

Sv(s
′, τ)(y1 − y1 p(s

′))

2π [(y1 − y1 p(s′))2 + (y3 + y3 p(s′))2]
∆s

−
N∑
s′=1

Ω(s′, τ)(y3 − y3 p(s
′))

2π [(y1 − y1 p(s′))2 + (y3 − y3 p(s′))2]
∆s

+
N∑
s′=1

Ω(s′, τ)(y3 + y3 p(s
′))

2π [(y1 − y1 p(s′))2 + (y3 + y3 p(s′))2]
∆s

v̂(y1, y3, τ) =
N∑
s′=1

−Sv(s′, τ)(y3 − y3 p(s
′))

2π [(y1 − y1 p(s′))2 + (y3 − y3 p(s′))2]
∆s

−
N∑
s′=1

Sv(s
′, τ)(y3 + y3 p(s

′))

2π [(y1 − y1 p(s′))2 + (y3 + y3 p(s′))2]
∆s

+
N∑
s′=1

Ω(s′, τ)(y1 − y1 p(s
′))

2π [(y1 − y1 p(s′))2 + (y3 − y3 p(s′))2]
∆s

−
N∑
s′=1

Ω(s′, τ)(y1 − y1 p(s
′))

2π [(y1 − y1 p(s′))2 + (y3 + y3 p(s′))2]
∆s,

using a simple one-sided Riemann approximation of the integrals (2.2.30), where N

is the number of computational nodes used in the plume discretization. One will

note that since all plume properties are only calculated up to the top of the plume,

the contribution to the induced velocity for points s′ > plume top is zero.

More care needs to be used when considering the velocity just off the plume.

This time, the integrals in the expressions for û and v̂ are taken in the principal

value sense, meaning the singularity is skipped. Thus, the discrete approximation

for the full velocity just off the plume, up to the height of the plume, becomes:

Vn±(s, τ) =
N∑
s′=1
s′ 6=s

−Sv(s′, τ)(y1 p(s)− y1 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2]
∆s

−
N∑
s′=1
s′ 6=s

Sv(s
′, τ)(y1 p(s)− y1 p(s

′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s
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−
N∑
s′=1
s′ 6=s

Ω(s′, τ)(y3 p(s)− y3 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2]
∆s

+
N∑
s′=1
s′ 6=s

Ω(s′, τ)(y3 p(s) + y3 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s− Sv(s, τ)

2

Vt±s, τ) =
N∑
s′=1
s′ 6=s

−Sv(s′, τ)(y3 p(s)− y3 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2]
∆s

−
N∑
s′=1
s′ 6=s

Sv(s
′, τ)(y3 p(s) + y3 p(s

′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s

+
N∑
s′=1
s′ 6=s

Ω(s′, τ)(y1 p(s)− y1 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2]
∆s

−
N∑
s′=1
s′ 6=s

Ω(s′, τ)(y1 p(s)− y1 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s± Ω(s, τ)

2
,

for 0 ≤ s ≤ plume top. For points above the plume top, a mollifier is used, following

Krasny [34] and Alben & Shelley [1], to smooth the effect of the singularity in the

free sheet. This results in:

Vn±(s, τ) =
N∑
s′=1

−Sv(s′, τ)(y1 p(s)− y1 p(s
′))

2π
[
(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2 + δ̃2

]∆s

−
N∑
s′=1

Sv(s
′, τ)(y1 p(s)− y1 p(s

′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s

−
N∑
s′=1

Ω(s′, τ)(y3 p(s)− y3 p(s
′))

2π
[
(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2 + δ̃2

]∆s

+
N∑
s′=1

Ω(s′, τ)(y3 p(s) + y3 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s− Sv(s, τ)

2
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Vt±(s, τ) =
N∑
s′=1

−Sv(s′, τ)(y3 p(s)− y3 p(s
′))

2π
[
(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2 + δ̃2

]∆s

−
N∑
s′=1

Sv(s
′, τ)(y3 p(s) + y3 p(s

′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s

+
N∑
s′=1

Ω(s′, τ)(y1 p(s)− y1 p(s
′))

2π
[
(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2 + δ̃2

]∆s

−
N∑
s′=1

Ω(s′, τ)(y1 p(s)− y1 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s± Ω(s, τ)

2
,

where here stop < s ≤ N and δ̃ = 0.02.

With this, the velocity both away from the discontinuity and on the discon-

tinuity can be calculated. As it has been seen, the velocity on the discontinuity is

computed using the discretization of the plume (the coordinate system fixed to the

plume). This is because the normal and tangential components are needed at those

specific heights, whereas the velocity away from the discontinuity can be calculated

on the discretized Cartesian grid.

3.3.0.1 Addition of Crosswind Flow to Implementation of Ambient Air

Velocity

As stated in the derivation of the velocity in the ambient air in Section 2.2.6,

the case of a crosswind flow will be of interest for this work. After approximating

the integrals in the expressions for the calculation of the velocity, both far from the

plume and on the discontinuity, the effect of the crosswind can be simply added in

the appropriate expressions following the derivations in Section 2.2.6.

For the velocity far from the plume, the calculation becomes:

û(y1, y3, τ) =
N∑
s′=1

−Sv(s′, τ)(y1 − y1 p(s
′))

2π [(y1 − y1 p(s′))2 + (y3 − y3 p(s′))2]
∆s

−
N∑
s′=1

Sv(s
′, τ)(y1 − y1 p(s

′))

2π [(y1 − y1 p(s′))2 + (y3 + y3 p(s′))2]
∆s

−
N∑
s′=1

Ω(s′, τ)(y3 − y3 p(s
′))

2π [(y1 − y1 p(s′))2 + (y3 − y3 p(s′))2]
∆s
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+
N∑
s′=1

Ω(s′, τ)(y3 + y3 p(s
′))

2π [(y1 − y1 p(s′))2 + (y3 + y3 p(s′))2]
∆s+ cw

v̂(y1, y3, τ) =
N∑
s′=1

−Sv(s′, τ)(y3 − y3 p(s
′))

2π [(y1 − y1 p(s′))2 + (y3 − y3 p(s′))2]
∆s

−
N∑
s′=1

Sv(s
′, τ)(y3 + y3 p(s

′))

2π [(y1 − y1 p(s′))2 + (y3 + y3 p(s′))2]
∆s

+
N∑
s′=1

Ω(s′, τ)(y1 − y1 p(s
′))

2π [(y1 − y1 p(s′))2 + (y3 − y3 p(s′))2]
∆s

−
N∑
s′=1

Ω(s′, τ)(y1 − y1 p(s
′))

2π [(y1 − y1 p(s′))2 + (y3 + y3 p(s′))2]
∆s.

When calculating the velocity on the discontinuity, the calculation becomes:

Vn±(s, τ) =
N∑
s′=1
s′ 6=s

−Sv(s′, τ)(y1 p(s)− y1 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2]
∆s

−
N∑
s′=1
s′ 6=s

Sv(s
′, τ)(y1 p(s)− y1 p(s

′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s

−
N∑
s′=1
s′ 6=s

Ω(s′, τ)(y3 p(s)− y3 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2]
∆s

+
N∑
s′=1
s′ 6=s

Ω(s′, τ)(y3 p(s) + y3 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s

− Sv(s, τ)

2
+ cw · n±(s, τ)

Vt±(s, τ) =
N∑
s′=1
s′ 6=s

−Sv(s′, τ)(y3 p(s)− y3 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2]
∆s

−
N∑
s′=1
s′ 6=s

Sv(s
′, τ)(y3 p(s) + y3 p(s

′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s
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+
N∑
s′=1
s′ 6=s

Ω(s′, τ)(y1 p(s)− y1 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2]
∆s

−
N∑
s′=1
s′ 6=s

Ω(s′, τ)(y1 p(s)− y1 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s

± Ω(s, τ)

2
+ cw ·T(s, τ),

for 0 ≤ s ≤ plume top. For points above the plume top:

Vn±(s, τ) =
N∑
s′=1

−Sv(s′, τ)(y1 p(s)− y1 p(s
′))

2π
[
(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2 + δ̃2

]∆s

−
N∑
s′=1

Sv(s
′, τ)(y1 p(s)− y1 p(s

′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s

−
N∑
s′=1

Ω(s′, τ)(y3 p(s)− y3 p(s
′))

2π
[
(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2 + δ̃2

]∆s

+
N∑
s′=1

Ω(s′, τ)(y3 p(s) + y3 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s

− Sv(s, τ)

2
+ cw · n±(s, τ)

Vt±(s, τ) =
N∑
s′=1

−Sv(s′, τ)(y3 p(s)− y3 p(s
′))

2π
[
(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2 + δ̃2

]∆s

−
N∑
s′=1

Sv(s
′, τ)(y3 p(s) + y3 p(s

′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s

+
N∑
s′=1

Ω(s′, τ)(y1 p(s)− y1 p(s
′))

2π
[
(y1 p(s)− y1 p(s′))2 + (y3 p(s)− y3 p(s′))2 + δ̃2

]∆s

−
N∑
s′=1

Ω(s′, τ)(y1 p(s)− y1 p(s
′))

2π [(y1 p(s)− y1 p(s′))2 + (y3 p(s) + y3 p(s′))2]
∆s

± Ω(s, τ)

2
+ cw ·T(s, τ),
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for stop < s ≤ N and δ̃ = 0.02.

3.4 Plume Position Update

The final piece of information necessary for implementation is a method for

updating the position of the plume. With the inclusion of the flag flapping ideas

[1], the plume has the ability to react to the flow induced by itself and react to any

atmospheric effects. An example of these atmospheric phenomenon is cross flow of

any kind. In such instances, one would expect the plume to move from its initial

vertical position. To implement the plume motion, the plume and its discrete points

are thought of as a chain, with distinct links. Each link has the ability to rotate,

using the computation nodes as pivot points. In the update of the position of the

plume, the transverse momentum from Appendix A will be used to calculate the

distance each node is “pushed” to one side or the other by such crosswind situations.

It is assumed that the first node in the plume (the point source fire) at

(y1, y3) = (0, 0) is fixed and not allowed to move. One can easily see that if w,

the transverse velocity calculated from (A.4.7), is positive, the plume will move to-

ward the + side of the domain (in the n+ direction) and if the transverse velocity

is negative, the plume will move in the opposite direction (in the n− direction).

Then following Figure 3.2, the angle at which a given link is “pushed” is calculated

by a simple geometric argument under the assumption that the angle of rotation

is small. Since a rotation is arc length preserving, the assumption that the angle

is small allows the arc swept by the rotation to be approximated by a simple line,

allowing for this geometric argument.

The process for calculating the new position of a node is accomplished by

using a rotation matrix. Care needs to be taken when using the rotation matrix

because the pivot needs to be translated to the origin. The calculation proceeds by

numerically translating the pivot back to the origin, rotating the link in the chain,

translating the pivot back to its original position, and then moving the pivot to the

previously rotated node. See Figure 3.3 for clarification. This process is done by
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Figure 3.2: Angle Link Rotates

using an affine transformation matrix which takes the form:

A =
1 0 ∆xs−1

0 1 ∆ys−1

0 0 1




1 0 y1 p(s− 1, τ)

0 1 y3 p(s− 1, τ)

0 0 1




cos θ sin θ 0

− sin θ cos θ 0

0 0 1




1 0 −y1 p(s− 1, τ)

0 1 −y3 p(s− 1, τ)

0 0 1



=


cos θ sin θ xs−1 + ∆xs−1 − xs−1 cos θ − ys−1 sin θ

− sin θ cos θ ys−1 + ∆ys−1 + xs−1 sin θ − ys−1 cos θ

0 0 1

 , (3.4.1)

where (y1 p(s−1, τ), y3 p(s−1, τ)) = (xs−1, ys−1) is the pivot point, and (∆xs−1,∆ys−1)

is the change in pivot point due to previous link rotating and changing position.
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Figure 3.3: Calculation of New Position Procedure

The matrices in (3.4.1) represent the manipulations in reverse order. This means

the first matrix is the translation to the previously rotated point, the next matrix is

the translation from the origin back to the original position of the point, etc. The

angle θ is simply calculated by equation:

θ = tan−1

(
(w(s, τ)− w(s− 1, τ)) ∆τ

∆s

)
, (3.4.2)

and the rotation matrix is multiplied by the position at the previous time to get the

new position: 
y1 p(s, τ + 1)

y3 p(s, τ + 1)

1

 = A


y1 p(s, τ)

y3 p(s, τ)

1

 . (3.4.3)
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3.5 Summary

In this chapter the ideas needed to implement the equations derived in Chap-

ter 2 in MATLAB were presented. Both systems were discretized into numerical

domains: the plume with an arc length nodal chain, and the ambient air with a sim-

ple Cartesian grid. The discretization allows all of the equations to be implemented.

A diffusive scheme was presented and applied to the conservation laws in the plume.

Due to the implementation of the equations inside the plume and only calculating

the plume variables up to the plume top, a positive flux (air moving toward the

top of the plume) is always expected. The added functionality of a flux condition

was implemented noting that the flux in each instance could be positive or nega-

tive, rendering a simple upwind or downwind scheme inapplicable. Boundary and

initial conditions were chosen such that fire behavior was induced into the system.

The integrals which represent the velocity in the ambient air are approximated by

Riemann sums and implemented as such. Finally, the method for calculating the

new position of the plume was derived using a transformation matrix.

With each of these pieces of information, the equations which describe the

overall system flow can be implemented into MATLAB in a time iterating fashion

to create a simple plume model using a stationary point source fire. Results from

this model can be seen in Chapter 4.



CHAPTER 4

Plume Model Results

Using the methods described in Chapter 3 to numerically solve the equations derived

in Chapter 2, results are obtained for an unforced plume, which represents a plume

with no ambient air forcing, and a plume under the influence a constant crosswind

in the ambient air. In both situations, hot air rises from a stationary point source

fire and forms into a plume.

The shading of the plume is an indication of the density of the air, so the red

represents a low density air, while the blue indicates air closer to the density of the

ambient air system. The arrows present in the ambient air system are an indication

of the flow in that region. As explained in Section 3.2.2, for now, random values are

used at the stationary fire point to induce behavior seen in real fires. These random

values induce a “puffing” and “curling” effect that propagates up from the fire point.

When looking at the results, one will see both of these effects are prominent in the

rising of the plume. As time progresses, it can be seen that some of the puffs pass

through the top of the plume. It has been assumed that anything above the cutoff

at the top of the plume is essentially well mixed air that has dissipated enough to

be labeled ambient air.

The model is also used to track the energies present in the plume over time.

The energy is visualized in the frequency domain to determine if the energy prop-

agates at particular frequencies. The kinetic energy and enstrophy will be used,

along with a frequency analysis to explore the power spectral density of the plume.

4.1 Unforced Plume

The simulation of an unforced plume shows a plume at different points in

time, rising through ambient air, without the presence of ambient air forcing factors

(i. e. wind). The simulation allows this unforced situation to be understood, and

represents pure plume propagation. The flow in the ambient air system shows

stagnation point behavior; the air is pulled in horizontally (most strongly around the

87
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Figure 4.1: Convergence Analysis of Numerical Scheme for Full Problem

fire point) and is then mixed into the plume as it rises. Due to the random values in

the boundary conditions, each simulation is subtly different, but the overall behavior

can be generalized by a single simulation as the random values only influence small

variations.

A convergence analysis was conducted to determine the accuracy of the nu-

merical scheme. Figure 4.1 verifies that the numerical scheme is convergent at first

order speeds. All errors calculated in this convergence analysis are calculated in

the L2 norm. This convergence analysis indicates that if ∆s = 0.5, the results are

different from the “exact” solution by 0.2. This analysis was conducted for this

simulation, and is assumed to be valid for all results presented in this thesis.

Figure 4.2 depicts a plume with a presence of puffs as seen in the solution

at t = 375. As was stated above, the puffs rise and eventually pass through the

top of the plume. Interestingly enough, it has been observed that the puffs move

at different speeds and interact with one another. If a fast moving puff meets a

slower moving puff, they interact by combining and moving at a new speed. The

effect of the bending and puffing is random, so each time the simulation is run, the

results look slightly different. Additionally, the time presented here on the title of

the figures is scaled time.

As time progresses throughout the snapshots in Figure 4.2, one can see that

the plume slightly bends back and forth due to the vorticity in the plume, and the

interaction of the vorticity generated by the entrainment of air. This behavior is

very similar to what was seen in the behavior of flags flapping in the wind [1].
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Figure 4.2: Numerical Solution for Unforced Plume

Since computation time is an interest of this work, the time it takes for the

simulation to be generated has been tracked. It should be understood that com-

putation times will vary greatly depending on the hardware of the computer used.

Here, computation times averaged five minutes, where the time lapse from the be-

ginning of the simulation to the end of the simulation was 450. Note, this number is

scaled time. In true units of time, this represents 30 minutes of simulation time. As
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previously stated, the computation time has been reduced to the order of minutes.

More importantly, results can be obtained in sub-real-time.

4.2 Crosswind Influenced Plume

This section presents simulations depicting a plume that is subject to a con-

stant crosswind. The case of a crosswind is considered in anticipation of a fire model

that accounts for fire/plume interaction. The results in this section describe an air

flow moving past and influencing the propagation of the fire plume created by a

stationary fire. A simple change of reference can be used to turn this situation into

a fire moving past stationary air, and thus allowing the fire to propagate. More

information about this change of reference idea can be found in Chapter 6.

Figure 4.3 presents a simulation at different points in time. Again, the time

in the title of the figures is a scaled quantity. The effects from the random values of

velocity and vorticity prescribed at the point source fire are masked by the dominant

crosswind that is identical in every simulation. The effects of puffing and bending

can still be noticed, although this time the crosswind exerts significant influence on

the behavior of the plume. For early times, the plume rises as it did in the unforced

ambient air, but this time, as the the plume rises and develops, it gets caught in the

crosswind and pulled with the ambient air flow. Buoyancy does play a significant

role in the bending at the bottom of the plume near the fire. The hot air pulls the

plume back to vertical. This force largely depends on the density of the air and

the velocity at which the air rises. With random values of velocity and vorticity

supplied at the fire, the plume also bends back and forth.

It is interesting to examine the flow in the ambient air as time progresses. The

velocity induced by the point source fire and entrainment has a significant effect on

what started as a crosswind flow. One can observe in Figure 4.3 at t = 450 that the

arrows representing the flow in the ambient air system at the higher heights start to

angle down towards the plume, indicating a strong entraining flow into the plume.

Again, the computation time of this simulation has been calculated. The

time it takes to compute the crosswind flow models averages approximately five

minutes. This time, the time lapse from the beginning of the simulation to the end
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Figure 4.3: Numerical Solution for Crosswind Influenced Plume

of the simulation was 450 scaled units of time. In true units of time, this represents

30 minutes of simulation time. Again as previously stated, the computation time

has been reduced to the order of minutes and the computation is still sub-real-time.
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4.3 Frequency Analysis

The model from Chapters 2 and 3 shows that the “puffs” and “curls” in the

plume appear to behave as waves as they propagate up through the plume. Follow-

ing Alben and Shelley [1], a frequency analysis is performed to explore the energy

spectrum of the system.

The frequency analysis is performed on two different energies present in the

plume model: the kinetic energy due to the “puffing” nature of the fire, and the

enstrophy due to the “curling” behavior. The fluctuations resulting in both of these

features are due to induced fluctuations in velocity and vorticity at the point source

fire. Since all values at the point source fire are prescribed, for now the effects

of two different inputs are studied; the first is random behavior prescribed at the

point source fire to simulate a real fire, while the second prescribes periodic forcing.

Examination of the randomly forced system helps to understand the ability of the

dynamics to respond to all frequencies, while study of periodic forcing can determine

if harmonics are generated by non-linear interactions in the system.

The frequency analysis is performed at this point to determine how the energies

propagate through the system under prescribed boundary conditions. In Chapter 6,

the same frequency analysis will be performed. However, in Chapter 6 fire dynamics

will be calculated making this analysis more interesting and revealing about the way

in which energy propagates from a fire.

4.3.1 Kinetic Energy

A standard definition of kinetic energy will be used for this application. The

kinetic energy density is defined as:

KE(s, τ) =
1

2
R(s, τ)b(s, τ)|V (s, τ)|2. (4.3.1)

One will note that as written above, the kinetic energy is a function of both

time and space. To obtain the total kinetic energy contained within the plume,
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(4.3.1) is integrated over the plume at a specific time:

KE(τ) =

∫ plume top

0

1

2
R(s, τ)b(s, τ)|V (s, τ)|2 ds, (4.3.2)

which is now understood to be only a function of time.

4.3.2 Enstrophy

Similar to the kinetic energy, the enstrophy density is defined as:

ε(s, τ) =
1

2
R(s, τ)b(s, τ)|Ω(s, τ)|2. (4.3.3)

Again to obtain the total enstrophy contained within the plume, (4.3.3) is

integrated over the plume:

ε(τ) =

∫ plume top

0

1

2
R(s, τ)b(s, τ)|Ω(s, τ)|2 ds, (4.3.4)

which is now understood to be only a function of time.

4.3.3 The Fourier Transform

From these definitions, the Fourier transform can be used to examine the

frequency make-up of the kinetic energy and enstrophy in frequency space. Although

it seems trivial, the definition of the Fourier transform that will be used in this

analysis should be specified since there are many definitions. The following definition

is used:

F(ω) =

∫ ∞
−∞

f(τ)e−2πiτω dτ. (4.3.5)

Numerically, there are several options that are available for performing this

transform and multiple approximations were considered. MATLAB has a built in

fast Fourier transform function, a discrete fast Fourier transform could be used, or

a simple approximation of (4.3.5) can be used. Here, the latter will be used, such

that:

F(ω) =

∫ Tf

0

f(τ)e−2πiτω dτ
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(a) Spectrogram
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Figure 4.4: Fourier Transform of Kinetic Energy for Random Values

F(ωk) ≈
Tf∑
j=1

f(τj)e
−2πiτjωk ∆τ

=

Tf∑
j=1

f(τj)e
−2πi(j−1)ωk ∆τ, (4.3.6)

where the reduction of the bounds on the integral is due to the fact that for τ > Tf,

f(τ) = 0 and the solution is not defined for negative time.

MATLAB’s short-time Fourier transform was used to verify the results ob-

tained by the simple numerical approximation, (4.3.6). The two methods were

shown to be equivalent, but this verification will not be presented here. Thus, the

simple numerical approximation (4.3.6) will be used. Similar to MATLAB’s built in

function, the Fourier transform data will be turned into a spectrogram, displaying

a three-dimensional surface representing the power spectral density of the kinetic

energy and enstrophy.

4.3.4 Random Fire Values

As stated in Section 3.2.2, random values for the velocity and vorticity inside

the plume are prescribed at the fire point to simulate the way in which a fire “curls”

and “puffs,” as seen in naturally occurring fires.

The power spectral density of the kinetic energy and enstrophy are shown in
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(a) Spectrogram
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Figure 4.5: Fourier Transform of Enstrophy for Random Values

Figures 4.4 and 4.5 for random values of velocity and vorticity prescribed at the

fire point. As one might expect, Figures 4.4 and 4.5 show that there is a frequency

response on all frequencies, suggesting no clear frequency make-up of the random

values in each of the energies. It should be noted that Figures 4.4a and 4.5a are the

power spectral densities at various times and frequencies. Figure 4.4b and 4.5b are

the Fourier transforms at the final time, and represents a (nearly) steady behavior.

It can also be seen that the enstrophy responds more to the randomness than the

kinetic energy does, which is also seen in Section 4.3.5.2.

It should be noted that the lack of random frequency dependence in kinetic

energy at high frequencies is due to the small random fluctuations in the velocity.

Had larger fluctuations been used in the velocity at the fire point, the same ran-

dom behavior would be exhibited in the spectrogram and Fourier transform. Upon

observation of the lower frequencies, the random response can be observed.

4.3.5 Harmonic Fire Values

The behavior of the model with periodic forcing is of interest to examine

whether the frequency at which the periodic harmonic function oscillates is atten-

uated or amplified. This problem will be split into two separate cases, the first of

which investigates a pure harmonic signal, and the second will add in the randomness

of noise that was seen in section 4.3.4.
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Figure 4.6: Fourier Transform of Kinetic Energy for Harmonic Forcing,
χ = 5 and χ̄ = 10

4.3.5.1 Sinusoidal Forcing With No Noise

A simple sinusoidal forcing at a fixed frequency for both the velocity and vor-

ticity is prescribed at the fire point in place of random values. This forcing is taken

to be:

V (0, τ) = 0.2 +
1

10
sin(2πχτ) = 0.2 +

1

10
sin(2πχt∆τ) (4.3.7)

Ω(0, τ) =
1

4
sin(2πχ̄τ) =

1

4
sin(2πχ̄t∆τ), (4.3.8)

where 0 ≤ χ ≤ 20, 0 ≤ χ̄ ≤ 20, and χ < χ̄. Here, χ and χ̄ are the frequency of the

harmonic functions for V and Ω respectively.

With a periodic harmonic function at a single frequency, one might expect

the ability to recover the known frequency make-up after simulation and taking the

Fourier transform. However, as seen in Figure 4.7, this is not the case. The single

frequency prescribed to vorticity has been split into many harmonic frequencies and

translated from the original input frequency in enstrophy. In contrast, it is easily

seen that in Figure 4.6 the original input frequency of velocity is recovered.
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Figure 4.7: Fourier Transform of Enstrophy for Harmonic Forcing, χ = 5
and χ̄ = 10
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Figure 4.8: Fourier Transform of Kinetic Energy for Harmonic Forcing
With Noise, χ = 5 and χ̄ = 10

4.3.5.2 Noise

To reintroduce the prescribed fire behavior, two different kinds of random noise

are added to the above harmonic functions. The first is a constant small amplitude

random noise that is added to the signal at every time step, whereas the second is the

randomness that adds the “curling” and “puffing” effects of the fire and is similar to

what is used in Section 4.3.4. The random values are normally distributed, chosen

such that the velocity is always positive, and updated at random time intervals.
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Figure 4.9: Fourier Transform of Enstrophy for Harmonic Forcing With
Noise, χ = 5 and χ̄ = 10

Figures 4.8 and 4.9 show the results. As one might expect, the effects from

Sections 4.3.4 and 4.3.5.1 appear to be superposed. As was mentioned earlier, the

random values (noise) affects the enstrophy more prominently and this is clearly seen

in Figure 4.9. The effect of the random forcing is less prominent in the kinetic energy,

although it is still noticeable. One can see that some of the imposed frequency spikes

are still prominent in both plots, showing that information regarding the signal can

still be recovered.

4.4 Conclusions

Use of the simplified model developed in Chapters 2 and 3 results in realistic

dynamics for the interaction of the plume with the ambient atmosphere, and is much

faster and simpler than a CFD type code which uses DNS or LES to simulate the

dynamics of a plume. The computation time needed to run this simplified model

is on the order of minutes, while some of the larger more detailed CFD models run

on the order of days and weeks. This shows that although the simplified model is

not as detailed, the model captures behavior that may be useful in situations where

predictive data is needed in real time.

Several structures and behaviors summarized in these chapters suggest that

the ideas from a flag flapping in the wind can be adapted to the paradigm of a
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plume rising in ambient air. The simulation of such behavior results in a physical

structure of the plume rising. When the snapshots of any of the results are stitched

together into a movie, the resulting simulation truly appears to be a plume rising

from a point source fire, almost like watching smoke rise from a candle.

The wave-like behavior observed in both the flag waving and the puffing of

the plume prompted a study of the frequency make-up of the kinetic energy and

enstrophy, which was used to track both of these physical phenomena respectively.

The situation studied here, specifically the interaction of the ambient air/plume

systems does not result in the emergence of periodic dependency on propagation,

damping, or amplification of the frequency from a harmonic function prescribed at

the fire point. This analysis suggests that the wave-like behavior is chaotic in nature.

The random forcing of the velocity and enstrophy used to simulate the “curl-

ing” and “puffing” of the fire did not result in an amplification of any particular

frequencies. Instead, the random values are propagated as noise, just as one would

see in signal processing without a resonant frequency. Additionally, when a pure

signal was used as the forcing for velocity and vorticity at the fire point, translations

and splitting of the frequencies were observed and attributed to the effects of the

non-linear system.

Also, as expected, when random values were superposed on the pure signal,

the results from the random test and the pure signal test appear to be superposed

and the random values were perceived as noise. It is noted that enstrophy was

more susceptible to the random noise. This can be explained by the fact that the

magnitude of the enstrophy is very small compared to that of the kinetic energy, or

even the noise.

The basic framework and a working model for atmospheric scale fire/flow

interaction have been provided here. A fire model has been developed, see Chapter

5, to couple to this plume model. Up to this point, fire properties are prescribed at

a stationary point source. A fire model based on combustion equations will allow

the fire to propagate through a homogeneous fuel bed. This fire model will allow

the calculation of spread rates, and most importantly allow the coupling of the

information from the fire model to the plume model. With this, the plume model
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will have the added data from modeled fire dynamics, which will make the results

more physical and accurate.



CHAPTER 5

Fire Model Derivation

Results up to this point have been obtained while prescribing boundary conditions

to the point source fire to simulate fire behavior. In this chapter, a fire model is

derived, not only to calculate fire dynamics to use at the point source fire in the

plume model, but also to allow the fire to participate in the dynamical processes as

more than a prescribed point source. This simple fire model allows the calculation of

the fire propagation rate, the velocity of the rising air from the fire, the temperature

and density of the fire, etc.

With the addition of the fire dynamics to the model, several more aspects of

the problem can be investigated. A frequency analysis will again be performed and

compared to the results already obtained to determine if there are any characteristic

frequencies at which the disturbances propagate. The results will also determine if

the fire behaves as prescribed random values at the fire point, or as the harmonic

forcing.

The fire in this model is assumed to burn due of a thin layer of homogeneous

fuel on the ground underneath the fire plume. As stated in Section 1.4 there are

four regions that need to be considered in this model, see Figure 1.2. The green

region is the unburned fuel region, the orange is the pyrolyzing region, the red is the

fire region, and the gray is the smoldering region. Physically, the fire radiates heat

that converts solid fuel to gaseous fuel, where eventually the gas fuel burns. In this

work, the formulation of the problem is simplified even further and only a fire region

will be considered. This can be seen in Figure 5.1, where the fire is represented as

a control volume.

It will be noted that this simplified fire model will neglect the effects of heat

transfer from the fire. The fire propagation speed will be relative to the amount of

oxygen supplied to the fire. Here, an implicit assumption has been made that the

more oxygen that supplies the fire, the faster the reaction rate of combustion, and

the faster the fire consumes the fuel. Thus, the fire has to propagate faster through

101
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Figure 5.1: Control Volume for Fire Region

the fuel.

5.1 Conservation Laws

Since the fire is allowed to propagate, the control volume has a velocity in the

y1 direction, vfire. The thin layer of fuel of constant height can be seen on the ground

under a flow of oxygen, with velocity vO2 , supplying the fire. As the fire burns, the

buoyant air rises, with velocity vup, and forms into the fire plume. The geometry

from Figure 5.1 is used in conjunction with a simplified chemical equation:

fuel +O2
<−→ by-products + heat,

which describes the complex reactions that take place during combustion and a

control volume derivation (similar to the approach from Appendix A) to obtain

conservation laws for the fire system.
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5.1.1 Total Density Equation

Let ρfire be the mass density in the fire, the width of the fire is b, and the height

of the fire region is h. Just as in the plume model, ∆y2 is the x2 direction, into the

page. This mass density will include the fuel density, the density of the oxygen, and

the density of the by-products. The mass in the control volume is easily written as:

∆y2

∫ b

0

∫ h

0

ρfire dy3dy1.

Thus, the rate of change of mass is equal to the density flux entering the control

volume minus the density flux exiting the control volume:

∆y2
∂

∂τ

∫ b

0

∫ h

0

ρfire dy3dy1 = ∆y2

∫ h

0

(vfireρfuel)

∣∣∣∣
y1=b

+ (vO2ρO2)

∣∣∣∣
y1=b

dy3

−∆y2

∫ b

0

(vupρfire)

∣∣∣∣
y3=h

dy1. (5.1.1)

It should be noted that vfire represents the speed at which the fire propagates

and is really composed of two separate terms, such that vfire = vCV + ∂b
∂τ

. Here

the first term represents the speed at which the control volume is moving, and the

second represents the speed at which the control volume expands.

Dropping the common ∆y2 and additionally assuming all quantities on the

boundary are constant across their respective edges, ρfire = ρfire(τ), and h = h(τ),

(5.1.1) reduces to:

∂

∂τ
(ρfirebh) = (vfireρfuel)

∣∣∣∣
y1=b

h+ (vO2ρO2)

∣∣∣∣
y1=b

h− (vupρfire)

∣∣∣∣
y3=h

b.

If it is additionally assumed h = constant, the conservation law becomes:

∂

∂τ
(ρfireb) =

(
vCV +

∂b

∂τ

)
ρfuel

∣∣∣∣
y1=b

+ (vO2ρO2)

∣∣∣∣
y1=b

− (vupρfire)

∣∣∣∣
y3=h

b

h
. (5.1.2)

Physically, the right-hand side represents the amount of fuel added to the control

volume do to the control volume moving and expanding, the influx of oxygen due

to induced flow, and the loss of mass due to the rising hot air.
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5.1.2 Fuel Density Equation

Let ρfuel be the fuel density. Following the same procedure as in Section 5.1.1,

the fuel mass in the control volume is written as:

∆y2

∫ b

0

∫ h

0

ρfuel dy3dy1.

The conservation equation for the fuel density is easily written:

∆y2
∂

∂τ

∫ b

0

∫ h

0

ρfuel dy3dy1 = ∆y2

∫ h

0

(
(vfireρfuel)

∣∣∣∣
y1=b

−
∫ b

0

< dy1

)
dy3, (5.1.3)

where < represents the reaction rate of combustion and will be defined later in this

work. Again, dropping the common ∆y2 and noting all quantities on the boundary

are constant across their respective edges, ρfuel = ρfuel(τ), h = h(τ), and the reaction

rate is constant throughout the control volume, (5.1.3) reduces to:

∂

∂τ
(ρfuelbh) = (vfireρfuel)

∣∣∣∣
y1=b

h− bh<.

When h = constant is applied, the conservation law becomes:

∂

∂τ
(ρfuelb) =

(
vCV +

∂b

∂τ

)
ρfuel

∣∣∣∣
y1=b

− b<. (5.1.4)

The right-hand side of this conservation equation physically states that fuel density is

increased as the fire propagates and decreases due to the consumption of combustion.

5.1.3 Oxygen Density Equation

Let ρO2 be the oxygen density. Similarly, the oxygen mass in the control

volume is written as:

∆y2

∫ b

0

∫ h

0

ρO2 dy3dy1,

and the conservation equation for the oxygen density is written:

∆y2
∂

∂τ

∫ b

0

∫ h

0

ρO2 dy3dy1 = ∆y2

∫ h

0

(
(vO2ρO2)

∣∣∣∣
y1=b

−
∫ b

0

< dy1

)
dy3. (5.1.5)
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Again, noting all quantities on the boundary are constant across their respective

edges, ρO2 = ρO2(τ), h = h(τ), and the reaction rate is constant throughout the

control volume, (5.1.5) reduces to:

∂

∂τ
(ρO2bh) = (vO2ρO2)

∣∣∣∣
y1=b

h− bh<.

If it is additionally taken that h = constant, the conservation law becomes:

∂

∂τ
(ρO2b) = (vO2ρO2)

∣∣∣∣
y1=b

− b<. (5.1.6)

Just as in the fuel density equation, the right-hand side physically states that oxygen

density increases as the flow of oxygen increases and the oxygen density decreases

due to the consumption of combustion.

5.1.4 By-Product Density Equation

Let ρby represent the by-product density. The by-product mass in the control

volume is written as:

∆y2

∫ b

0

∫ h

0

ρby dy3dy1,

and the conservation equation for the by-product density is written:

∆y2
∂

∂τ

∫ b

0

∫ h

0

ρby dy3dy1 = ∆y2

∫ b

0

(
− (vupρfire)

∣∣∣∣
y1=h

+

∫ h

0

< dy3

)
dy1.

Again, noting all quantities on the boundary are constant across their respec-

tive edges, ρby = ρby(τ), h = h(τ), and the reaction rate is constant throughout the

control volume, this reduces to:

∂

∂τ
(ρbybh) = − (vupρfire)

∣∣∣∣
y1=h

b+ bh<.

Additionally, using h = constant, the conservation law becomes:

∂

∂τ
(ρbyb) = − (vupρfire)

∣∣∣∣
y1=h

b

h
+ b<. (5.1.7)
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Here, the equation states that the density of by-products increases with the reaction

rate of combustion, and decreases due to the buoyant air rising to form the fire

plume.

5.1.5 Energy Density Equation

Let ρfireθCp be the total energy density in the fire, where θ is the temperature

of the fire, and Cp is the specific heat at constant pressure. The energy is written

as:

∆y2

∫ b

0

∫ h

0

ρfireθCp dy3dy1.

Thus, the rate of change of energy is equal to the energy density flux entering the

control volume minus the energy density flux exiting the control volume:

∆y2
∂

∂τ

∫ b

0

∫ h

0

ρfireθCp dy3dy1 = ∆y2

∫ h

0

(vfireρfuelθfuelCp fuel)

∣∣∣∣
y1=b

dy3

+∆y2

∫ h

0

(
(vO2ρO2θO2CpO2)

∣∣∣∣
y1=b

+

∫ b

0

<∆h dy1

)
dy3

−∆y2

∫ b

0

(vupρfireθCp)

∣∣∣∣
y3=h

dy1.

Additionally assuming all quantities on the boundary are constant across their

respective edges, θ = θ(τ), Cp = Cp(τ), and h = h(τ), this reduces to:

∂

∂τ
(ρfireθCpbh) = (vfireρfuelθfuelCp fuel)

∣∣∣∣
y1=b

h+ (vO2ρO2θO2CpO2)

∣∣∣∣
y1=b

h

− (vupρfireθCp)

∣∣∣∣
y3=h

b+ bh<∆h.

Again, using the fact that h = constant, the conservation law becomes:

∂

∂τ
(ρfireθCpb) = (vfireρfuelθfuelCp fuel)

∣∣∣∣
y1=b

+ (vO2ρO2θO2CpO2)

∣∣∣∣
y1=b

− (vupρfireθCp)

∣∣∣∣
y3=h

b

h
+ b<∆h

∂

∂τ
(ρfireθCpb) =

((
vCV +

∂b

∂τ

)
ρfuelθfuelCp fuel

)∣∣∣∣
y1=b

+ (vO2ρO2θO2CpO2)

∣∣∣∣
y1=b
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− (vupρfireθCp)

∣∣∣∣
y3=h

b

h
+ b<∆h. (5.1.8)

Physically this conservation of energy equation states that the energy density in-

creases due to the addition of fuel, oxygen, and the exothermic combustion reaction,

but decreases due to the hot buoyant air rising to form a fire plume.

Using the total density equation to simplify, this becomes:

∂

∂τ
(θCp) =

(
vCV + ∂b

∂τ

)
ρfuel

ρfireb
(θfuelCp fuel − θCp)

∣∣∣∣
y1=b

+
vO2ρO2

ρfireb
(θO2CpO2 − θCp)

∣∣∣∣
y1=b

+
<
ρ fire

∆h. (5.1.9)

5.1.6 Final Form Conservation Laws

With these derivations, the simplified chemical equation:

A(fuel) +B(O2)
k1−→ C(by-products) +D(heat),

which now allows for the stoichiometric constants to be different, and

< = k1(θ)ρAfuelρ
B
O2

, the system of conservation laws becomes:

∂

∂τ
(ρfireb) = (vfireρfuel)

∣∣∣∣
y1=b

+ (vO2ρO2)

∣∣∣∣
y1=b

− (vupρfire)

∣∣∣∣
y3=h

b

h
(5.1.10)

∂

∂τ
(ρfuelb) = (vfireρfuel)

∣∣∣∣
y1=b

− Abk1(θ)ρAfuelρ
B
O2

(5.1.11)

∂

∂τ
(ρO2b) = (vO2ρO2)

∣∣∣∣
y1=b

−Bbk1(θ)ρAfuelρ
B
O2

(5.1.12)

∂

∂τ
(θCp) =

vfireρfuel

ρfireb
(θfuelCp fuel − θCp)

∣∣∣∣
y1=b

+
vO2ρO2

ρfireb
(θO2CpO2 − θCp)

∣∣∣∣
y1=b

+D
k1(θ)

ρfire

ρAfuelρ
B
O2

∆h. (5.1.13)

The reaction rate < was approximated using the simplified chemical equation and

a law of mass action derivation. It will be noted that while vfire = vCV + ∂b
∂τ

, the

velocity of the fire will be written as vfire from here on, with the understanding that

the velocity is comprised of multiple parts.
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5.2 Non-Dimensional Form

The conservation laws above are still in dimensional form. In order to couple

the fire model to the plume model, the scalings of the variables must be the same. To

do this, all variables are non-dimensionalized, just as they were in the plume model.

Once in non-dimensional form, the equations can be solved and implemented.

Let ρ̃? = ρ?
ρ0

, θ̃? = θ?
θ0

, b̃ = b
l1

, ṽ? = v?
v0

, h̃ = h
l3

, τ̃ = τ v0
l1

, C̃p ? = Cp ?
Cp air

, ∆̃h =

∆h

θ0Cp air
, where it is understood that ?̃ denotes a dimensionless variable. Substituting

these rescaling into the equations and dropping unnecessary dimensionless notation,

one obtains the following equations:

∂

∂τ
(ρfireb) = (vfireρfuel)

∣∣∣∣
y1=b

+ (vO2ρO2)

∣∣∣∣
y1=b

− l1
l3

(vupρfire)

∣∣∣∣
y3=h

b

h
(5.2.1)

∂

∂τ
(ρfuelb) = (vfireρfuel)

∣∣∣∣
y1=b

− l1
v0

ρA+B−1
0 Abk1(θ)ρAfuelρ

B
O2

(5.2.2)

∂

∂τ
(ρO2b) = (vO2ρO2)

∣∣∣∣
y1=b

− l1
v0

ρA+B−1
0 Bbk1(θ)ρAfuelρ

B
O2

(5.2.3)

∂

∂τ
(θCp) =

vfireρfuel

ρfireb
(θfuelCp fuel − θCp)

∣∣∣∣
y1=b

+
vO2ρO2

ρfireb
(θO2CpO2 − θCp)

∣∣∣∣
y1=b

+
l1
v0

ρA+B−1
0 D

k1(θ)

ρfire

ρAfuelρ
B
O2

∆̃h. (5.2.4)

5.2.1 Quasi-Steady State Assumption

The three-dimensional paradigm in Chapter 2 states that the fire line is well

defined and nearly straight. Such a situation could be though of as a steady state

or equilibrium state and is achieved after the fire has become well developed while

propagating through the homogeneous fuel bed. Thus, a quasi-steady state assump-

tion is made for the conservation laws. A quasi-steady state assumption exploits

the fact that the fire propagates for a long time, and once this equilibrium has been

achieved, there are small variations of the dependent variables in time.

Using the quasi-steady state assumption of small variations for long times, the

ODEs in time can be reduced to algebraic equations:

0 = (vfireρfuel)

∣∣∣∣
y1=b

+ (vO2ρO2)

∣∣∣∣
y1=b

− l1
l3

(vupρfire)

∣∣∣∣
y3=h

b

h
(5.2.5)
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0 = (vfireρfuel)

∣∣∣∣
y1=b

− l1
v0

ρA+B−1
0 Abk1(θ)ρAfuelρ

B
O2

(5.2.6)

0 = (vO2ρO2)

∣∣∣∣
y1=b

− l1
v0

ρA+B−1
0 Bbk1(θ)ρAfuelρ

B
O2

(5.2.7)

0 =
vfireρfuel

ρfireb
(θfuelCp fuel − θCp)

∣∣∣∣
y1=b

+
vO2ρO2

ρfireb
(θO2CpO2 − θCp)

∣∣∣∣
y1=b

+
l1
v0

ρA+B−1
0 D

k1(θ)

ρfire

ρAfuelρ
B
O2

∆̃h. (5.2.8)

Upon coupling the fire model to the plume model and the ambient air, the

velocity of the atmospheric flow moving toward the fire will be known due to the

calculations in the ambient air. Thus, velocity of the oxygen entering the fire can

be written as:

vO2 = vfire + χ, (5.2.9)

where χ is the known velocity along the ground calculated by the plume model just

ahead of the plume. With this, the above system of algebraic equations will be used

to solve for expressions for the unknowns.

Equation (5.2.9) can be substituted into equations (5.2.6) and (5.2.7), where

after manipulation, an expression for the velocity of the fire can be obtained:

vfire =
−χρO2

∣∣
y1=b
− (A−B) l1

v0
ρA+B−1

0 bk1(θ)ρAfuelρ
B
O2

(ρO2 − ρfuel)
∣∣
y1=b

. (5.2.10)

Since, vO2 = vfire + χ:

vO2 =
−χρO2

∣∣
y1=b
− (A−B) l1

v0
ρA+B−1

0 bk1(θ)ρAfuelρ
B
O2

(ρO2 − ρfuel)
∣∣
y1=b

+ χ

vO2 =
−(A−B) l1

v0
ρA+B−1

0 bk1(θ)ρAfuelρ
B
O2
− χρfuel

∣∣
y1=b

(ρO2 − ρfuel)
∣∣
y1=b

. (5.2.11)

With this, (5.2.10) is substituted into (5.2.6) to obtain an expression for b, the

width if the fire:

b =
χρO2ρfuel

∣∣
y1=b

l1
v0
ρA+B−1

0 k1(θ)ρAfuelρ
B
O2

(
Bρfuel

∣∣
y1=b
− AρO2

∣∣
y1=b

) . (5.2.12)
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The use of (5.2.12) in (5.2.10) results in the simplification of the expression

for the fire velocity:

vfire =
AχρO2

∣∣
y1=b(

Bρfuel

∣∣
y1=b
− AρO2

∣∣
y1=b

) , (5.2.13)

and (5.2.11) can be written as:

vO2 =
Bχρfuel

∣∣
y1=b(

Bρfuel

∣∣
y1=b
− AρO2

∣∣
y1=b

) . (5.2.14)

Equation (5.2.5) can be simplified using expressions for the known quantities:

l1
l3

(ρvup)

∣∣∣∣
y3=h

b

h
=

AχρO2

∣∣
y1=b(

Bρfuel

∣∣
y1=b
− AρO2

∣∣
y1=b

)ρfuel +
Bχρfuel

∣∣
y1=b(

Bρfuel

∣∣
y1=b
− AρO2

∣∣
y1=b

)ρO2

(ρvup)

∣∣∣∣
y3=h

=
l3
l1

h l1v0ρA+B−1
0 k1(θ)ρAfuelρ

B
O2

(
Bρfuel

∣∣
y1=b
− AρO2

∣∣
y1=b

)
χρO2ρfuel

∣∣
y1=b


AχρO2ρfuel

∣∣
y1=b

+BχρfuelρO2

∣∣
y1=b(

Bρfuel

∣∣
y1=b
− AρO2

∣∣
y1=b

)


(ρvup)

∣∣∣∣
y3=h

=
l3
l1

h l1
v0
ρA+B−1

0 k1(θ)ρAfuelρ
B
O2

χρO2ρfuel

∣∣
y1=b

(
(A+B)χρO2ρfuel

∣∣
y1=b

)
(ρvup)

∣∣∣∣
y3=h

= (A+B)h
l3
v0

ρA+B−1
0 k1(θ)ρAfuelρ

B
O2
, (5.2.15)

and (5.2.8) can be rewritten as:

θCp =
1

A+B

(
BθO2CpO2 + AθfuelCp fuel +D∆̃h

)
. (5.2.16)

An equation of state is also used such that p = ρfireθ, where p is pressure.

Thus, ρ can be written as:

ρfire =
pCp

1
(A+B)

(
BθO2CpO2 + AθfuelCp fuel +D∆̃h

) , (5.2.17)
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and (5.2.15) can be solved for vup:

vup

∣∣
y3=h

=
θ

p
(A+B)h

l3
v0

ρA+B−1
0 k1(θ)ρAfuelρ

B
O2

vup

∣∣
y3=h

=

(
BθO2CpO2 + AθfuelCp fuel +D∆̃h

)
pCp

h
l3
v0

ρA+B−1
0 k1(θ)ρAfuelρ

B
O2
. (5.2.18)

It is assumed that all stoichiometric constants are equal, A = B = C = D = 1.

With this, the expressions for all unknown quantities are reduced to the following

expressions:

b =
χ
∣∣
y1=b

l1
v0
ρ0k1(θ)

(
ρfuel

∣∣
y1=b
− ρO2

∣∣
y1=b

) (5.2.19)

vfire =
χρO2

∣∣
y1=b

(ρfuel − ρO2)
∣∣
y1=b

(5.2.20)

vO2 =
χρfuel

∣∣
y1=b

(ρfuel − ρO2)
∣∣
y1=b

(5.2.21)

θCp =
1

2

(
θO2CpO2 + θfuelCp fuel + ∆̃h

)
(5.2.22)

vup

∣∣
y3=h

=

(
θO2CpO2 + θfuelCp fuel + ∆̃h

)
pCp

h
l3
v0

ρ0k1(θ)ρfuelρO2 (5.2.23)

ρfire =
pCp

1
2

(
θO2CpO2 + θfuelCp fuel + ∆̃h

) . (5.2.24)

5.2.2 Bernoulli’s Principle

The pressure in the equation of state will be calculated by solving Bernoulli’s

equation for the pressure just in front of the propagating fire. Bernoulli’s equation

states:

p = 1− 1

2
ρ2
O2
χ2, (5.2.25)

where the constant was evaluated by using the boundary conditions far from the

plume. With this, the expressions for the unknown quantities can be written as:

b =
χ
∣∣
y1=b

l1
v0
ρ0k1(θ)

(
ρfuel

∣∣
y1=b
− ρO2

∣∣
y1=b

) (5.2.26)
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vfire =
χρO2

∣∣
y1=b

(ρfuel − ρO2)
∣∣
y1=b

(5.2.27)

vO2 =
χρfuel

∣∣
y1=b

(ρfuel − ρO2)
∣∣
y1=b

(5.2.28)

θCp =
1

2

(
θO2CpO2 + θfuelCp fuel + ∆̃h

)
(5.2.29)

p = 1− 1

2
ρ2
O2
χ2 (5.2.30)

vup

∣∣
y3=h

=

(
θO2CpO2 + θfuelCp fuel + ∆̃h

)
(
1− 1

2
ρ2
O2
χ2
)
Cp

h
l3
v0

ρ0k1(θ)ρfuelρO2 (5.2.31)

ρfire =

(
1− 1

2
ρ2
O2
χ2
)
Cp

1
2

(
θO2CpO2 + θfuelCp fuel + ∆̃h

) . (5.2.32)

5.3 Implementation

As was previously stated, the goal of deriving a fire model is to couple the

information obtained from the fire model to the point source fire in the plume model.

This will eliminate the need for guessed random values for boundary conditions at

the fire. This coupling will be done in two different ways. The first occurs through

the point source fire and is straight forward. The values calculated through the

algebraic equations above will be used for the boundary condition at the fire point

in the plume model. The second coupling is through the ambient air system, and

was seen in the expression for the velocity of the oxygen, vO2 = vfire +χ. This second

coupling allows the flow in the ambient air system to influence the speed at which

the fire propagates.

One can easily see that after the fire model is used to calculate the fire values,

to use these values as boundary conditions in the plume model:

ρfire = R(0, τ) θ = Θ(0, τ) vup = V (0, τ).

These values from the fire model take the place of the random values that were used

in Section 3.2.2. Although, values of vorticity at the fire point are still assumed to

be random and are implemented exactly as stated in Section 3.2.2.

The plume model was implemented under the assumption that the point source
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fire is stationary, but this fire model now allows the fire to propagate. The plume

model code will be used in this implementation with a simple change of reference

of the plume model results obtained with a crosswind present in the ambient air.

The case of the crosswind in the plume model is thought of as air moving past a

stationary fire. As was stated, this time the fire is allowed to propagate. So, a

reference fixed to the fire is chosen, and the case of the crosswind is now thought of

as a fire moving past stationary air. Meaning for implementation,

cw =

vfire

0

 , (5.3.1)

assuming there are no other ambient air wind conditions.

Additionally, for visualization purposes only, the distance the fire travels over

time can be computed using the simple equation:

fire distance
∣∣
t=τ

= fire distance
∣∣
t=τ−1

+ vfire(τ)∆τ. (5.3.2)

All MATLAB code for the fire model is available upon request.

5.3.1 Parameter Values

For implementation, many parameter values need to be chosen such that the

model can be evaluated after coupling to the plume model. These parameters are

largely based on the composition of the fuel bed. It is assumed that the fire and fuel

bed are of constant height h = 1m, and the fuel layer is homogeneously composed

of evenly distributed pine needles.

With the choice of the fuel bed composition, the physical quantities can be

determined. Values determined by papers referenced in this section served as a

reference value. Some parameters needed to be adjusted due to the simplicity of the

model. The density of oxygen is misleading in name. Here, due to the composition

of air, reactants and oxidizers are present. Thus, ρO2 is chosen as ρO2 = 1.2 kg
m3 , which

represents the density of air at ambient temperature. If the fuel density is chosen for

a packed fuel bed without voids, a value would be chosen following [25]. However,
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this is not the case in normal wildfires. There are voids between fuel particles, and

the crown of a tree and the ground, effectively lowering the fuel load density. This

effective fuel load density is called the bulk density. Values were chosen from [58]

for the bulk density of brush and litter and [69] for the bulk density of crown fuel.

The values were averaged, such that ρfuel = 6.8 kg
m3 . Additionally, it is taken that the

temperature of the ambient air is θambient = 292K, matching the values taken in the

plume model. With this, it is taken that all oxygen and fuel entering the control

volume representing the fire is at the ambient temperature. This means that there is

no preheating of the fuel. This is due to the assumption of no radiation, convection,

or conduction influencing the propagation of fire, as seen in (5.2.20).

Here, the choices of specific heats are, CpO2 = 1.005 kJ
kg K

and Cp fuel = 1.8 kJ
kg K

,

following [46]. The value of the heat of combustion is taken for live pine needles

calculated in [65], ∆h = 7000kJ
kg

, and modified to ∆h = 3000kJ
kg

for implementation.

The specific heat capacity of air at 1100K, a typical temperature within a fire, is

taken to be Cp = 1.155 kJ
kg K

.

To approximate the reaction rate, an Arrhenius Law is used such that k1(θ) =

AθBe
−Ea
Rθ , where A is a pre-reaction rate, Ea is the activation energy, and R is the

ideal gas constant. The values of A = 6.4× 109, B = 1, and Ea = 105kJ
kg

were found

in a table of rate constants [76] and were chosen for a reaction between nitrogen

and oxygen. These values are used as reference values in the model. Adjustments

need to be made due to the fact that many reactions take place during combustion.

For implementation, it is chosen that A = 6.4× 109, B = 1, and Ea = 41.5kJ
kg

. The

value of R is taken to be R = 286.9 m2

sec2K
= 286.9 J

kgK
, which is consistent with the

choice in the plume model.

The values of these quantities above are non-dimensionalized giving the quan-

tities:

ρ̃fuel =
6.8 kg

m3

1.2 kg
m3

= 5.667 (5.3.3)

ρ̃O2 =
1.2 kg

m3

1.2 kg
m3

= 1 (5.3.4)

θ̃fuel =
292K

292K
= 1 (5.3.5)
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θ̃O2 =
292K

292K
= 1 (5.3.6)

h̃ =
1m

100m
= .01 (5.3.7)

b̃ =
b

100m
(5.3.8)

C̃p fuel =
1.8 kJ

kg K

1.005 kJ
kg K

= 1.79 (5.3.9)

C̃pO2 =
1.005 kJ

kg K

1.005 kJ
kg K

= 1 (5.3.10)

C̃p fire =
1.155 kJ

kg K

1.005 kJ
kg K

= 1.149 (5.3.11)

∆̃h =
3000kJ

kg

1.005 kJ
kg K
· 292K

= 10.22. (5.3.12)

It can be easily seen that scaling constants have been chosen such that, ρ0 =

ρair, θ0 = 292K, l3 = 100m, and l1 = 100m. Additionally chose v0 = l3
t0

= 100
4

m
sec

=

25 m
sec

, which is consistent with the values chosen in the plume model, Section 2.1.1.



CHAPTER 6

Fire Model Results

The equations from Chapter 5 are implemented in MATLAB using the parameters

and methods in Section 5.3, solved numerically, and coupled to the plume model to

obtain the results shown in this chapter.

Again, the red shading of the plume indicates a low density air, a blue shading

of the plume indicates air close to the density of the ambient air, and the arrows

present in the ambient air system are an indication of the flow. This time, one will

note the presence of red and black bars underneath the fire plume. The red bar is an

indication of the width of the fire, and the back bar is an indication of the distance

the fire has traveled during the simulation. The red bar is not always visible. This

is due to the fact that the majority of the time the width of the fire is small and the

scales used for plotting are relatively large.

One will notice that these results are consistent with the implementation tech-

niques outlined in Chapter 5, with the fire appearing to propagate to the right side

of the figures. This was achieved through the use of a reference frame fixed to the

fire, where a crosswind was used to indicate the flow due to the fire moving. In each

of the figures shown below, the fire plume reacts as one would expect.

An analogy was used to determine if the behavior of the plume was physically

accurate. Consider a person walking at constant speed. At fixed intervals of time,

say five seconds, the person releases a balloon. After a balloon is released, the

effect of buoyancy causes it to rise over the position on the ground at which it was

released. After all balloons are released, if an observer were to describe the profile

of the balloons, due to constant speed, the balloons would create a straight line

with negative slope. Variations in speed of the fire propagating, or in the analogy

variations in the speed at which the person walks, only effect the slope of the profile

of the balloons.

Just as in Chapter 4, the model was again used to track the various energies

in the plume to determine if the addition of fire dynamics to the system effects the

116
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frequency analysis. The results from the frequency analysis are again presented as

a spectrogram and as plots in the frequency domain.

6.1 Fire Propagation

The implementation technique of using a change of reference has allowed the

fire to propagate, representing the culmination of a fully functioning wildfire model.

The results are presented in Figure 6.1. The results look much like the results

presented in Chapter 4 for the crosswind case, as one would expect. It is interesting

to see the effect of the values now prescribed by the fire model.

Figure 6.1 depicts a plume, interestingly, without the presence of puffs as seen

in the solution at t = 375. As time progresses throughout the snapshots, one can see

that the plume responds to not only the crosswind, but the buoyancy and vorticity

as discussed in Chapter 4. Just as in the analogy of balloons, the smoke released

at the beginning of the simulation is fixed above that point, as the fire continues to

propagate. Again, the time in these figures is scaled time.

Here, computation times averaged around six minutes, where the time lapse

from the beginning of the simulation to the end of the simulation was 600. Note, this

number is scaled time. In true units of time, this represents 40 minutes of simulation

time. Even with the added fire model, computation times have been kept sub-real-

time. In this amount of time, the fire, on average, has propagated approximately

2.4 units of length, or 240m, which corresponds to an average approximate fire

propagation speed of 6 m
min

.

The fire propagation can be visualized by Figure 6.2 in a plot of traveled fire

distance versus time. It can be seen that the fire propagates at a relatively constant

speed, although there are some variations in this propagation speed. As will be

mentioned in the coming frequency analysis, these variations are small due to the

quasi-steady state assumption.

6.2 Frequency Analysis

The same frequency analysis from Chapter 4 was performed on the same ener-

gies in the plume, enstrophy and kinetic energy. Since the random values of vorticity
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Figure 6.1: Numerical Solution for Fire Model

are still used at the fire point, from Section 3.2.2, the spectral results for vorticity

closely mirror those seen in Chapter 4.

The power spectral density of the kinetic energy and enstrophy with values

calculated by the fire model are shown in Figures 6.3 and 6.4. At first glance,

it appears as though the spectral results shown in Figure 6.3 suggest there is no

frequency dependence on the propagation of kinetic energy throughout the plume.



119

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

t

D
is

ta
nc

e

Distance Fire Traveled Over Time

Figure 6.2: Progression of Fire Propagation
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Figure 6.3: Fourier Transform of Kinetic Energy for Fire Model Inputs

Although, upon examining the extreme low frequencies of the kinetic energy in

Figure 6.3b, it is easily seen that there are random frequency responses, as seen in

Figure 6.5, which closely resembles the results from the random input in the plume

model.

The results from Figure 6.5 surprisingly suggest the fire model behaves as

the randomly forced plume model results from Chapter 4. The need to isolate the
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Figure 6.4: Fourier Transform of Enstrophy for Fire Model Inputs
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Figure 6.5: Magnified Fourier Transform of Kinetic Energy

low frequencies in the Fourier transform results is attributed to the effects of the

quasi-steady state assumption. This assumption imposed small variations over long

periods of time. The frequency dependence for the kinetic energy in the model is

induced by the fluctuations in the velocity, but the quasi-steady state assumption

assumed these variations are small. Thus, the frequency dependence is small as well.

Additionally, there are slight differences between the results for enstrophy from
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these results and those shown in Chapter 4. The largest difference is the magnitude

of the transformed values. The differences here can be a result of the other values

needed for computing enstrophy, such as density and width of the plume. These

values are still influenced by the fire model, resulting in the slight differences.

6.3 Conclusions

The extremely simplified model developed in Chapter 5 has resulted in a re-

alistic addition to the plume model developed in Chapters 2 and 3. This additional

model allows an interaction between the plume and ambient atmosphere with a fire

to be investigated. The two models were coupled, creating a feedback loop allowing

the flow in the ambient air system to influence the propagation of the fire, and vice

versa. Closely following the results from the plume model, the results of the cou-

pled models can be obtained in sub-real-time, which is a welcomed by-product of

a simplified model. All below comments should be considered, noting that the fire

model is extremely simplified, and as such, does a decent job describing the complex

physical processes.

The fire model adds the rate of fire propagation to the predicted quantities.

As seen in the figures, and more clearly in the video of the simulation, it appears

as though the fire propagation speed varies drastically from one plot to another.

This variation can be attributed to the frame rate of the simulation and plots, and

also, due to the fact that the fire tends to propagate quickly for a short period of

time, then slow down to consume the fresh fuel it has just moved into. Although,

as seen from Figure 6.2, long-time trends suggest the fire does propagate at a nearly

constant rate. It must be fully understood that the only connection between the

plume system and the fire model, at this point, is the velocity of the flow supplying

oxygen to the fire system.

The frequency analysis of the fire model has revealed the characterization of the

behavior of the fire. While at first glance, the model appeared to have no frequency

dependence in kinetic energy, but after closer examination of the lower frequencies,

a random response was identified. As was mentioned before, the investigation was

focused on the low frequencies due to the quasi-steady state assumption used to
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derive this model. The quasi-steady state assumption also explains why the puffing

behavior is absent in the results here. This puffing behavior could be attributed to

several characteristics of the model. Most influential of these characteristics is the

absence of the transfer of energy from the fire into the fuel layer and the homogeneity

of the fuel layer. As a fire moves through different fuels, the energy gained through

combustion will vary, affecting the buoyancy of the gas in the plume.



CHAPTER 7

Fire Propagation on a Slope

The models presented in the previous chapters represent a simplified wildfire model.

They have been developed for a fire propagating across a homogeneous fuel bed on

a constant topography. There are several possible extensions of the above wildfire

model. One extension, which will be investigated here, is the possibility of changes

in topography of the land. As was reported by many previous works cited in Chapter

1, a slope has a large effect on not only the propagation speed of the fire, but also

the dynamics of the flow of the problem.

The situation of a fire propagating along a flat topography (Chapter 5) can

be easily adapted to the case of a slope driven fire though the implementation of

the equations derived in Chapter 2. In dealing with sloped coordinate systems, care

needs to be taken in resolving forces, especially gravity, to account for contributions

in directions normal and tangential to the slope. With this in mind, the equations

from Chapter 2 are rederived for slope fires. In this derivation, not all equations

are affected. Only the equations that change from the derivation in Chapter 2 are

presented here. In addition, all implementation techniques are identical to those in

Chapter 3 unless stated otherwise.

The differences in derivation occur in the momentum equations. Figure 7.1

shows the two coordinates systems used for these calculations. The unprimed coor-

dinates are termed the calculational coordinate system, and the primed coordinates

are the physical coordinates. As the name suggests, the calculational coordinate

system is used for all computations, and after the results are obtained, they are

mapped to the physical coordinates. All calculations conducted within the calcu-

lational coordinate system proceed as in Chapters 2 and 5 with a change in the

direction of gravity.

The choice of a sloped topography induces a change in the effect of gravity. It

is assumed that the ground is sloped at an angle of ϕ, measured from the positive

y′1 axis, see Figure 7.1. In physical coordinates, gravity still points in the e′g =

123
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Figure 7.1: Geometry for Fires on Inclines

(
0, 0, −1

)T
direction, although its effects now need to be decomposed into its

normal and tangential components or the calculational coordinates, again see Figure

7.1. Thus, the choice of the unit vector eg needs to be rotated by the angle ϕ:

eg =


cosϕ 0 − sinϕ

0 1 0

sinϕ 0 cosϕ




0

0

−1

 =


sinϕ

0

− cosϕ

 .

With this, the momentum equations of the general solution to the boundary

layer problem can be written as:

l23
R̄T0t20

R̃(0)
[
(ṽ

(0)
1 )τ +

(
ṽ

(0)
1 (ṽ

(0)
1 )y1

)
+
(
ṽ

(0)
3 (ṽ

(0)
1 )y3

)]
+

(
P (H)
y1

+
gl3
R̄T0

P (H1)
y1

+
l23

R̄T0t20
P (1)
y1

)
=
gl3 sinϕ

R̄T0

R̃(0) +
η0

R̄ρ0T0

(
T̃

(0)
11 y1

+ T̃
(0)
13 y3

)
(7.0.1)
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ṽ
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1 (ṽ
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+
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(0)
3 (ṽ

(0)
3 )y3
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+
l3
li

(
P (H)
y3

+
gl3
R̄T0

P (H1)
y3

+
l23

R̄T0t20
P (1)
y3

)
=
−gl3 cosϕ

R̄T0

R̃(0) +
η0

R̄ρ0T0

(
T̃

(0)
31 y1

+ T̃
(0)
33 y3

)
,

(7.0.2)

where the equations are written for the horizontal and vertical directions respec-

tively. These equations reduce to (2.1.10) for ϕ = 0.

The remainder of this chapter exactly follows the derivation in Chapter 2. All

assumptions used in Chapter 2 are mirrored here, even if not explicitly stated. The

equations are scaled to describe the plume system, where conservation laws for the

system are derived, and ambient air system where separated O(1), O(β), and O(σ)

systems are obtained.

7.1 Outer Solution-Ambient Air System

In the ambient air system, the two momentum equations can be written as:

σ
(
R(H)
o + βR(H1)

o + σR(1)
o

)
[(vo 1)τ + (vo 1(vo 1)y1) + (vo 3(vo 1)y3)]

+P (H)
y1

+ βP (H1)
y1

+ σP (1)
y1

= β sinϕ
(
R(H)
o + βR(H1)

o + σR(1)
o

)
(7.1.1)

σ
(
R(H)
o + βR(H1)

o + σR(1)
o

)
[(vo 3)τ + (vo 1(vo 3)y1) + (vo 3(vo 3)y3)]

+P (H)
y3

+ βP (H1)
y3

+ σP (1)
y3

= −β cosϕ
(
R(H)
o + βR(H1)

o + σR(1)
o

)
, (7.1.2)

where it is easily seen that the same asymptotic expansion, induced by the expansion

in pressure, is used for density.

Again, the perturbation analysis is performed to separate the effects of the

multiple scales in the above equations. It is clearly seen that the O(1) system

remains the same as in Chapter 2 due to the fact that the terms added for the slope

contribute on the O(β) scale. Thus, P (H) = 1, R
(H)
o = 1, and θ

(H)
o = 1. So, the

focus shifts to the O(β) system.

7.1.1 O(β) System

This time, the full O(β) system can be written as:

R(H1)
o τ +

(
R(H1)
o vo 1

)
y1

+
(
R(H1)
o vo 3

)
y3

= 0 (7.1.3a)
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P (H1)
y1

= sinϕR(H)
o (7.1.3b)

P (H1)
y3

= − cosϕR(H)
o (7.1.3c)

R(H)
o

[
(θ(H1)
o )τ + vo 1(θ(H1)

o )y1 + vo 3(θ(H1)
o )y3

]
−γ − 1

γ

[
P (H1)
τ + vo 1P

(H1)
y1

+ vo 3P
(H1)
y3

]
= 0 (7.1.3d)

P (H1) = R(H1)
o + θ(H1)

o . (7.1.3e)

Following the same procedure as before, the energy equation, (7.1.3d), and

the equation of state, (7.1.3e), can be used to derive a differential relation between

pressure and density. This time, there are contributions in both the y1 and y3

directions due to the inclined topography. Using the momentum equations in both

directions, (7.1.3b) and (7.1.3c), and the previous differential relations, one obtains

the equations:

γR(H1)
o y1

= sinϕR(H)
o = sinϕ (7.1.4)

γR(H1)
o y3

= − cosϕR(H)
o = − cosϕ, (7.1.5)

which can be solved for the O(β) correction of density. Thus, the O(β) corrections

can be calculated:

R(H1)
o = −1

γ
(y3 cosϕ− y1 sinϕ)

θ(H1)
o = −

(
1− 1

γ

)
(y3 cosϕ− y1 sinϕ)

P (H1) = − (y3 cosϕ− y1 sinϕ) ,

where again the boundary condition at the ground was used. With this, the full

asymptotic expansions of the ambient air variables can be written as:

P = 1− β (y3 cosϕ− y1 sinϕ) + σP (1) (7.1.6)

θ = 1− β
(

1− 1

γ

)
(y3 cosϕ− y1 sinϕ) + σθ(1)

o (7.1.7)

R = 1− β 1

γ
(y3 cosϕ− y1 sinϕ) + σR(1)

o . (7.1.8)
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Again, if ϕ = 0 these expressions are exactly those from Chapter 2.

In continuing to separate orders one will notice that the O(σ) system remains

the same as the system derived in Chapter 2. Again, this is due to the fact that the

terms added due to the new topography contribute on the O(β) scale. The fact that

the O(σ) system remains unchanged means the vorticity equation is unchanged

as well. Since at this point in this work, only the first non-zero term is used as

approximations of the asymptotic expansions are used, for implementation, there

are no changes to the ambient air variables that need to be made for the addition

of the slope.

7.2 Inner Solution-Plume System

To describe the plume, which represents the inner layer of the problem, the

variables must be rescaled. The rescalings are identical to those in Chapter 2, and

are made noting that the majority of the velocity inside the plume is in the y3

direction. Upon substituting the rescaled velocity, distance, and time into (7.0.1)

and (7.0.2), the momentum equations can be written as:

RV 2
p δ [(V1)τ̃ + (V1(V1)Y1) + (V3(V1)y3)]

+
1

δ

R̄T0t
2
0

l23

(
P

(H)
Y1

+ βP
(H1)
Y1

+ σP
(1)
Y1

)
=
t20g

l3
R sinϕ+ V 2

p

(
1

δ
T̂11Y1 + T̂13y3

)
RV 2

p [(V3)τ̃ + (V1(V3)Y1) + (V3(V3)y3)]

+
R̄T0t

2
0

l23

(
P (H)
y3

+ βP (H1)
y3

+ σP (1)
y3

)
= −t

2
0g

l3
R cosϕ+ V 2

p

(
T̂31Y1 + δT̂33y3

)
.

The derivatives of pressure are known from the newly derived expansions,

(7.1.6), such that PY1 = δβ sinϕ+σP
(1)
Y1

and Py3 = −β cosϕ+σP
(1)
y3 . It is seen that

this time, the asymptotic expansion in pressure has been rescaled for the plume

system. Meaning, inside the plume, in terms of Y1,

P = 1− β (y3 cosϕ− (y1 p + δY1) sinϕ) + σP (1).

Substituting these expressions into the above equations results in the reduc-



128

tion:

RV 2
p δ [(V1)τ̃ + (V1(V1)Y1) + (V3(V1)y3)]

+
1

δ

R̄T0t
2
0

l23

(
δβ sinϕ+ σP

(1)
Y1

)
=
t20g

l3
R sinϕ+ V 2

p

(
1

δ
T̂11Y1 + T̂13y3

)
RV 2

p [(V3)τ̃ + (V1(V3)Y1) + (V3(V3)y3)]

+
R̄T0t

2
0

l23

(
−β cosϕ+ σP (1)

y3

)
= −t

2
0g

l3
R cosϕ+ V 2

p

(
T̂31Y1 + δT̂33y3

)
.

Again following the derivation from Chapter 2, a first approximation in σ and

β is made (σ � 1 and β � 1). Additionally, since the interest is in a narrow plume,

the limit is taken as δ → 0, which results in the O(1) momentum equations for the

plume system:

P
(1)
Y1

= V 2
p T̂11Y1

RV 2
p [(V3)τ̃ + (V1(V3)Y1) + (V3(V3)y3)]−

R̄T0t
2
0

l23
β cosϕ = −t

2
0g

l3
R cosϕ+ V 2

p T̂31Y1 .

It is again taken that V 2
p =

gt20
l3

to ensure the fundamental balances between the

buoyancy terms and the entrainment terms, and the definition of β is used to further

reduce the momentum equations:

P
(1)
Y1

=
gt20
l3
T̂11Y1

R [(V3)τ̃ + (V1(V3)Y1) + (V3(V3)y3)]− cosϕ = −R cosϕ+ T̂31Y1 .

The equations can be written in conservation form:

P
(1)
Y1

=
gt20
l3
T̂11Y1 (7.2.1)

(RV3)τ̃ + (RV1V3)Y1 +
(
RV 2

3

)
y3
− cosϕ = −R cosϕ+ T̂31Y1 , (7.2.2)

and the derivation continues as it did in Chapter 2 by integrating the system of

across the plume.

One will note that again, the momentum equation in the horizontal direction
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implies that there are pressure gradients across the plume, albeit they are small due

to the scalings in the expansion of pressure. One will also notice that this pressure

gradient is exactly the same as in Chapter 2, where the inclined slope has no effect

on the pressure jump.

The derivation of the energy equation also contains derivatives of pressure,

which as seen above has changed from the derivation in Chapter 2. Although, to

leading order, the alterations due to the slope do not contribute or effect implemen-

tation. That is, from (2.3.2), the energy equation can be written as:

RVp [Θτ̃ + V1ΘY1 + V3Θy3 ]− Vp
γ − 1

γ

[
P

(H)
τ̃ + βP

(H1)
τ̃ + σP

(1)
τ̃

+ V1

(
P

(H)
Y1

+ βP
(H1)
Y1

+ σP
(1)
Y1

)
+ V3

(
P (H)
y3

+ βP (H1)
y3

+ σP (1)
y3

)]
= VpQ̃+ Vp (q̂1Y1 + δq̂3y3) .

Upon substitution of the pressure expansion (7.1.6), the energy equation becomes:

RVp [Θτ̃ + V1ΘY1 + V3Θy3 ]− Vp
γ − 1

γ

[
σP

(1)
τ̃ + V1

(
δβ sinϕ+ σP

(1)
Y1

)
+ V3

(
−β cosϕ+ σP (1)

y3

)]
= VpQ̃+ Vp (q̂1Y1 + δq̂3y3) .

Taking a first approximation in both β and σ and allowing δ → 0 results in the

same energy equation as in Chapter 2:

R [Θτ̃ + V1ΘY1 + V3Θy3 ] = Q̃+ q̂1Y1 .

In the averaging process, all conservation laws are integrated with respect to

Y1. Since all changes to the momentum equations induced by the inclined slope are

constants with respect to Y1, the final form integral conservation equations will be

identical to the ones in Chapter 2, with the constant multiples reflected in the above

equations. Thus, the final form conservation laws for the plume system as derived

in Cartesian coordinates becomes:

(Rb)τ̃ + (bRV3)y3 = Sm (7.2.3a)
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P (1)

∣∣∣∣y1p+ b
2

y1p− b2

=
gt20
l3
T̂11

∣∣∣∣y1p+ b
2

y1p− b2

(7.2.3b)

(bRV3)τ̃ + (bRV 2
3 )y3 = bf + SM (7.2.3c)

(bRΘ)τ̃ + (bRV3Θ)y3 = bH + ST (7.2.3d)

(RbΩ)τ̃ + (RbΩV3)y3 = G+ SG (7.2.3e)

P (H) = RΘ, (7.2.3f)

where the only change is to f . Here, f = cosϕ (1−R).

7.2.1 Control Volume Conservation Laws

As was stated in Chapter 2, Chapter 3, and Appendix A, the integral derivation

of these conservation equations is only valid for a nearly vertical plume. The interest

in this work is in an arbitrary plume position. Thus, the curvilinear complement

of the conservation laws need to be derived. The only changes to the curvilinear

equations, mirroring the Cartesian counterparts, is the change of the effect of gravity

to account for a rotation in coordinate system. Again, the changes to the equations

from Appendix A will only be reflected in the axial and transverse momentum

equations. In the same manner as before, only the axial and transverse momentum

equations will be rederived here. For the reference in the coming derivation, it

must be noted that T · eg = T1 sinϕ − T2 cosϕ = ∂y1
∂s

sinϕ − ∂y3
∂s

cosϕ. Similarly,

n · eg = n1 sinϕ− n2 cosϕ = ∂y1
∂ν

sinϕ− ∂y3
∂ν

cosϕ.

7.2.1.1 Conservation of Axial Momentum

Using the same derivation as in Appendix A, the scaled axial momentum

equation can be written as:

(RbV )τ = −
(
RbV 2

)
s

+ SM −
t20R̄T0

l23
b
∂P

∂s
+Rbg̃ sinϕ

∂y1

∂s
−Rbg̃∂y3

∂s
cosϕ, (7.2.4)

where this time, it is seen that the force of gravity must be decomposed to gain the

correct contribution relative to the inclined slope. Writing the derivative of pressure
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using the definition from (7.1.6) as:

∂P

∂s
=
∂y1

∂s

∂P

∂y1

+
∂y3

∂s

∂P

∂y3

= β sinϕ
∂y1

∂s
− β cosϕ

∂y3

∂s

=
gl3
R̄T0

sinϕ
∂y1

∂s
− gl3
R̄T0

cosϕ
∂y3

∂s
,

allows the conservation law to be written as:

(RbV )τ = −
(
RbV 2

)
s

+ SM + (1−R) g̃b
∂y3

∂s
cosϕ− (1−R) g̃b

∂y1

∂s
sinϕ. (7.2.5)

For implementation, the mass equation, (A.2.2), is used to simplify this ex-

pression to:

Vτ +

(
1

2
V 2

)
s

=
1

Rb

(
SM + (1−R) g̃b

∂y3

∂s
cosϕ

− (1−R) g̃b
∂y1

∂s
sinϕ− V Sm

)
. (7.2.6)

7.2.1.2 Conservation of Transverse Momentum

The conservation of transverse momentum can be though of as the normal

complement to the axial momentum equation. Just as in the derivation of the axial

momentum equation, the derivation is identical to that shown in Appendix A with

a rotation of coordinates. The transverse momentum equation can be written as:

(Rbw)τ = −(RbwV )s +R+
o Vn+v

+
in +R−o Vn−v

−
in −Rwv+

out −Rwv−out −
t20R̄T0

l23
b
∂P

∂ν

+Rbg̃
∂y1

∂ν
sinϕ−Rbg̃∂y3

∂ν
cosϕ. (7.2.7)

Writing the derivative of pressure as:

∂P

∂ν
=
∂y1

∂ν

∂P

∂y1

+
∂y3

∂ν

∂P

∂y3

= β sinϕ
∂y1

∂ν
− β cosϕ

∂y3

∂ν
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=
gl3
R̄T0

sinϕ
∂y1

∂ν
− gl3
R̄T0

cosϕ
∂y3

∂ν
,

allows the conservation law to be written as:

(Rbw)τ = −(RbwV )s +R+
o Vn+v

+
in +R−o Vn−v

−
in −Rwv+

out −Rwv−out

+ (1−R)bg̃
∂y3

∂ν
cosϕ− (1−R)bg̃

∂y1

∂ν
sinϕ. (7.2.8)

For implementation, this can be easily solved for w the transverse velocity of

the plume using the fact that b ∼ δ and ∂
∂ν
∼ 1

δ
:

w =
R+
o Vn+v

+
in −R−o Vn−v−in

R(v+
out + v−out)

+ (1−R)
bg̃ ∂y3

∂ν
cosϕ

R(v+
out + v−out)

− (1−R)
bg̃ ∂y1

∂ν
sinϕ

R(v+
out + v−out)

.

All remaining conservation equations are unchanged in the rotation of coordi-

nates, and are implemented as before in Chapter 3.

7.3 Implementation & Results

The equations this chapter are implemented in MATLAB using the same im-

plementation as in Section 5.3 and Chapter 3 to be solved numerically. The MAT-

LAB code is available upon request. For the results presented in this section, unless

stated otherwise, ϕ = 30 degrees. The only difference between the code used in

the fire model and the code used here is the direction of gravity. Due to this, the

equations and solution method used are identical, save the changes noted in this

chapter for the conservation laws. When results are obtained, one will note the

results are relative to the calculational coordinate system, see Figure 7.1. To obtain

the results in the physical coordinate system, relative to the incline, the results are

simply rotated to reflect the inclined geometry. This rotation is clearly reflected

in Figure 7.2. One will note that the angle between the plume and the horizontal

ground in Figure 7.2a appears to be smaller than the angle between the plume and

the inclined ground in Figure 7.2b. This is due to the aspect ratio of the figures,

the angles are identical.

The presentation of the results mirror those in Chapters 4 and 6, such that
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(a) Calculational Coordinates
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(b) Physical Coordinates

Figure 7.2: Results in Calculational and Physical Coordinate Systems

the shading of the plume is an indication of the density of the air, the arrows are an

indication of the flow, and the black and red bars indicate the width of the fire and

the distance the fire has traveled respectively. As with Chapter 6, the same change

of reference was applied to the crosswind flow simulation from Chapter 4 to allow

the fire to propagate.

The same frequency analysis that has been performed in each results section

is again used to determine this time if the addition of an inclined slope to the

system effects the frequency analysis. The results from the frequency analysis are

again presented as a spectrogram and as plots in the frequency domain. Since the

implementation of the equations has not changed from the fire model, the frequency

dependence is identical to the results in Chapter 6.

7.3.1 Fire Propagation on an Inclined Slope

The same implementation of the equations from Chapter 5 is used for the fire

propagating on a slope, with the small changes mentioned above. The results of the

extension of the simple wildfire model are presented in Figure 7.3. The results do

show a realistic behavior of fire propagating along the slope, while the plume reacts

to the propagation of the fire.

Figure 7.3 depicts a plume, moving along the topography at various times

throughout the simulation. Just as was found in Chapter 6, the plume does not
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Figure 7.3: Numerical Solution for Slope Fire Model, ϕ = 30 Degrees

contain the puffing behavior that was expected. This can again be attributed to the

simplified fire model. As before, the time in the title of these figures is scaled time.

One will note that the plume appears to remain nearly vertical throughout

the duration of the simulation. This is an interesting result due to the fact that

the results from the fire model indicate a significant curvature of the plume due

to propagation. Additionally, as noted below, the propagation speed of the fire is
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much slower than that of the fire model. All of this evidence points to the existence

of an upslope flow that forces the plume to remain nearly vertical and slows the

propagation speed of the fire.

As with the fire model, computation times averaged around six minutes, where

the time lapse from the beginning of the simulation to the end of the simulation was

600. In true units of time, this represents 40 minutes of simulation time, which is

well below real-time. In this amount of time, the fire, on average, has propagated

about 1.3 units of length, or about 130m, for an approximate fire spread rate of

3.21 m
min

.

Again, the fire propagation can be visualized through the plot of fire propa-

gation distance over time, as seen in Figure 7.4. The fire is again seen to propagate

at a nearly constant rate, due to the quasi-steady state assumption. The fire prop-

agation speed for various angles of the incline (and decline) were also investigated

to determine if the model can capture the propagation accurately. Note here, that

a negative angle corresponds to an incline, and a positive angle corresponds to a

decline. As seen in Figure 7.5, one can see that the fire propagates faster on flat

ground versus an incline. This result is counterintuitive, due to the fact that fires do

propagate faster up inclines. This discrepancy is due to the absence of heat transfer

in the fire model.

To investigate this further, consider why real fires propagate faster up inclines.

On these inclines, there is a strong upslope flow that pushes the fire toward the

unburned fuel. This is called flow attachment. After the flow is attached, the effects

of radiation, conduction, and convection dominate, preheating the fuel so the fire

can propagate faster up the slope.

In the simplified fire model presented here, the model does predict the presence

of a strong upslope flow, but in the absence of the transfer of heat, the fire cannot

propagate faster. Additionally, in this model, the strong upslope flow impedes the

fire propagation due to the mechanics of fire propagation. A strong upslope flow

means the downslope flow is small. In the case of an incline, the fire propagation

speed is proportional to this downslope flow, hence, the fire propagates slower than

on flat ground. This also explains why the fire propagates faster on the decline.
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Figure 7.4: Progression of Fire Propagation

The strong upslope flow is then proportional to the fire propagation speed, which is

large in this case.

This unphysical result can be addressed by allowing the effect of convection to

preheat the fuel in a small region within the fuel layer. The hotter fuel will ignite

faster, causing the fire to propagate more quickly as seen in nature.

7.3.2 Frequency Analysis

The same frequency analysis from Chapter 4 and 5 was performed on the same

energies in the plume, enstrophy and kinetic energy. Since the implementation is

identical to that of the fire model, the results of the frequency analysis are identical

as well.

The power spectral density of the kinetic energy and enstrophy with values

calculated by the fire model are shown in Figures 7.6 and 7.7. As before, upon closer

examination of the kinetic energy, it is observed that there are random frequency

responses, as seen if Figure 7.8. All conclusions drawn from the results in Chapter

6 can be applied here as well.
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Figure 7.5: Fire Propagation Speed for Various Angled Topographies

7.4 Conclusions

The slope wildfire model developed in this Chapter is one possible extension

of the simplified wildfire model developed in the previous chapters. The results in

the previous section validate that the model can be successfully adapted to account

for topography of land, which is one step toward a model that will be able to be

implemented for field use.

The same conclusions can be drawn about the fire propagation characteristics

as in the fire model. The fire tends to propagate quickly, then slows down while the

fuel is consumed. It is an interesting result from the simulations used here, that the

fire does propagate more slowly up the slope than on flat ground. The main reason

fires do propagate faster up slopes is flow attachment, as seen in Chapter 1, which

allows the fire to transfer energy more quickly to the fuel layer. This attachment

is induced by an upslope flow that is stronger than the down slope flow, tilting the

flame structure toward the fuel. In the absence of the transfer of energy, the slower

propagation speed is due to the changes in air flow on the slope topography. In this

model, the change in flow can result in the change in propagation speed.
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Figure 7.6: Fourier Transform of Kinetic Energy for Slope Fire Model
Inputs
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Figure 7.7: Fourier Transform of Enstrophy for Slope Fire Model Inputs
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CHAPTER 8

Future Work

There are several directions that can be investigated in moving this project forward.

This model is still in its infancy, and there is still a large amount of work and

verification to be done before the model can be integrated into a tool that can be

used in the field. The basic framework and a working wildfire model, including

models focused on the interaction between the plume, ambient air and the fire,

has been provided in this thesis. The models were derived from first principles,

effectively narrowing the focus of the models to the key driving dynamics of the

systems. As was seen in all results chapters, the goal of reducing computation

time has been achieved, where all results were obtained in faster than real-time

computation speeds. The simplifying assumptions used to narrow the focus of the

models sometimes sacrifices physical attributes of the problem. Future work in

most cases will be focused on verifying and modifying the assumptions to match

what physically occurs in nature, while asserting the fact that computation cost

should be kept to a minimum.

8.1 Modification of Simplifying Assumptions

8.1.1 Plume Model

The plume model was derived by a method reminiscent of the solution to a

boundary layer problem. In each solution (outer and inner) a perturbation expansion

of the dependent variables was used to reduce the Navier-Stokes equations to a more

manageable set of equations. Several first approximations were made by only using

the first non-zero term from these asymptotic expansions.

In the ambient air system, these first non-zero approximations resulted in a

linear profile of pressure, and constant density and temperature. This effectively

restricts the validity of the model to low height plumes (of O(β−1) in dimensional

height). As the plume extends further into the atmosphere, the error in stratification

will be more and more prominent. In future work, if more terms in the asymptotic
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expansions of ambient air variables were used, (e. g., to an O(β2) approximation),

the variation of pressure, density, and temperature with height would correct the

effects of stratification to the ambient air system.

Inclusion of these terms in the ambient air system will extend the validity of

this approach to much higher fire plumes. The more terms that are used from the

expansions, the more accurate the expansion become. It must be noted that as more

terms are retained in the expansions, the more complex the equations become. For

example, the O(β) vorticity equation for ω1 depends on ω0, and the density variation

with height. Thus, the ambient air system is no longer incompressible at this order,

so that a potential flow solution of the ambient air system is no longer valid.

In the plume system, only the first order contributions to the equations were

considered. Additional orders and contributions can be considered to see if any

additional dynamics contribute on other orders.

8.1.2 Fire Model

The fire model was derived using control volume balances under the assump-

tion that only a fire region needs to be considered. Physically, there are four regions

that are present: an unburned fuel region, a pyrolyzing fuel region, a fire region,

and a smoldering fuel region, see Figure 1.2. The assumption that only a fire re-

gion needs to be considered induces an assumption of heat propagation. In this

model, the fire propagates due to the supply stream of oxygen. The faster the sup-

ply oxygen moves, the faster the fire propagates. This assumes that the faster the

supply stream brings oxygen to the fire, the faster the combustion reaction takes

place and the faster the rate of consumption of fuel. This assumption does not allow

for the transfer of heat from the fire to the fuel through radiation, convection, or

conduction.

Future work would allow for a model in all four regions, tracking the exchange

of mass and energy from each fuel state, and more importantly, the radiation of heat

from the fire. Simple conservation laws can be used, derived through control volume

arguments. This time the equations should allow for the energy contained within the

bonds of the molecules, whereas the derivation of mass is similar to what has been
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shown in this thesis. Radiation can be accounted by following a derivation due to

Albini [4]. Fuel particles can be assumed to be black bodies, where the intensity of

heat radiated from the fire is a decreasing function of both distance traveled through

the fuel layer and the number of particles absorbing the energy as it passes. This

could be achieved by calculating the distance of a fuel particle from the fire and

integrating over the intensity of all fuel particles in the fire region within a line of

sight. Allowing for this energy transfer would help the fire propagate by preheating

the fuel, and is more physical than the assumption used here.

Allowing for multiple regions within the fire layer also induces other physical

aspects of the problem. Consumed, or nearly consumed, fuel comprises the smol-

dering region. While cooling does occur within this region, say proportional to the

ambient temperature (i.e., Newton’s law of cooling), the consumed fuel is consider-

ably hotter than the ambient temperature. Allowing for multiple regions would also

mean allowing for non-constant ambient air properties such as a temperature jump

across the plume. This would induce a pressure gradient across the plume, and a

flow from high temperature to low temperature, facilitating the propagation of the

fire. In addition to this, the existence of hotter matter in the system might locally

increase the temperature of the ambient air, again inducing a flow in the region.

Although fire on slopes have been investigated in this thesis, the addition of

the transport of heat to the fire model would drastically change the behavior of

the fire. It is well known that when fires ascend slopes, they have the ability to

attach to the slope, substantially increasing the speed at which the fire propagates.

This attachment increases the heat transferred through radiation, convection, and

conduction, heating the fuel faster and allowing the fire to propagate faster.

A simple improvement of the slope model presented in Chapter 7 could account

for some heat transfer to allow the physical propagation of the fire. Specifically, the

hot gas rising vertically from the fire has both a normal and tangential component

when on a slope. The normal component represents the air rising into the fire plume,

whereas the tangential component of this velocity will move hot air through the fuel

layer. This hot air will preheat a small region of fuel, effectively accounting for the

transfer of heat from the fire to the fuel through convection. Consequently, this
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would provide the means necessary for the fire to propagate faster up inclines, and

relatively equal propagation speeds for declines and flat ground.

Currently, the fire model only considers a homogeneous fuel bed. It is well

known that in nature, the fuel load is rarely homogeneous. There are pockets of air

between pine needles, and on a larger scale, there are empty spaces between trees

and leaves. This influences the effective fuel load and the dynamics of the flow within

the fuel layer. Allowing for a nonhomogeneous fuel bed would affect the propagation

speed and behavior. Additionally, the vegetation layer is never smooth. Trees stick

up at different heights and air can pass between all the air pockets between trees

and leaves. The vegetation creates drag force on the ambient air as it is drawn into

the fire. Not only is this a drag force, but as the air is drawn through the fuel layer,

it becomes susceptible to heating due to the transfer of energy from the fire. These

additional forces and heating will affect the amount and temperature of oxygen that

is delivered to the fire, therefore affecting the behavior of the fire and its propagation

speed.

Another exercise that could be used to test the capabilities of the model would

be to combine several homogeneous fuel beds with different fuel compositions to-

gether to see the effects on the fire plume. Along the same lines, a topography could

be pieced together in the same way, moving from flat ground to an incline and finally

to a decline. Such simulations would determine if the model is capable of handling

realistic topographies and fuel compositions such as those faced in the real world.

Combustion and pyrolyzation are complex sets of reactions that take place over

varying time scales. There are many factors that influence the rates at which these

reactions take place. Specifically, the moisture content of the fuel has a very large

effect on the propagation speed of the fire. If the fuel first needs to be dried before

pyrolyzation can occur, the fire will propagate much more slowly than it would if

the fuel was already dried. The loss of moisture can be modeled as an evaporation

process, where the water converts to vapor as it is heated. Using more complex and

physical chemical reactions and the tracking of each of the species present in the

reaction (i.e., oxygen, nitrogen, carbon, etc.) to model the transfer of species from

fuel to by-products would allow the combustion process to be modeled much more
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accurately.

This tracking of species could be complemented by a Lagrangian particle ap-

proach, where individual smoke and fuel particles are released at the fire. This would

aid in the tracking of fuel consumed by the fire and additionally the visualization of

the smoke. Particularly, the particles could give an indication to when the smoke

has dissipated enough to return to the classification of ambient air.

While it is seen that there are many improvements that can be made to this

simple wildfire model, it must be remembered that the goal of this work is to obtain a

simplified model which can run at computation speeds faster than real-time. In order

to keep this computation time reasonable for use in the field, physical attributes need

to be balanced with computation times of implementation, meaning this model was

never intended to be the most physically accurate model. Many models reviewed in

Chapter 1 are extremely accurate due to the inclusion of detailed physical processes.

However, these are the same models that require the use of CFD codes to solve the

complex equations, greatly increasing the computation time.

8.2 Extensions of Wildfire Model

There are several extensions and different applications to which this simple

model can be applied, and not all applications are specialized for fires. The plume

model may be applied to any thermally buoyant sheet plume induced by a one-

dimensional concentrated heat source, where the specialized two-dimensional geom-

etry used this thesis may be applied. An example of this would be an extension to

trench fires.

In examining extensions of the wildfire model as applied to wildfires, the most

difficult of any future work will be to extend the models to a full three-dimensional

geometry. This challenging task can be divided into two steps. First, as an inter-

mediate step between the working model and a full three dimensional model, the

perfectly straight fire line could be allowed the ability to curve. This curvature

would be slowly varying, and include many different effects due to the propagation

speed of different areas of the fire. For example, if the fire line was now assumed to

have fixed length in the y2 direction, one might see the ends travel slower than the
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center of the fire line. This would effect the heating of fuel in front of the fire line,

possibly speeding up the propagation of the ends of the fire line. This intermedi-

ate extension could be thought of physically as taking a section of a fire front, big

enough to allow small variations, but not large enough that the variations in curva-

ture are dominant. Additionally, with a third dimension, effects along the fire line

need to be considered. Such effects might include flows along the fire line induced

by gradients in temperature and pressure.

Finally, the full extension to a three-dimensional model can be made. This

would involve rederiving and solving the governing equation in their three-dimensional

form. The process of extension to a fully physical model can be though of as red-

eriving this work, without the simplifying assumptions used to narrow the focus of

the model to the key driving dynamics of the fire plume and fire. The derivation

and solution procedure would have to reflect the goal to keep computation time at

a minimum.

At this point, the models presented above have been implemented in MAT-

LAB, where all differential equations have been solved using first order accurate

schemes in both time and space. To increase accuracy, at the expense of computa-

tion time, more accurate solution schemes could be developed to see the effect on

the solution. Due to the time iterating solution method and the dependence of the

solution on previous time steps chosen in this thesis, explicit methods in time should

be used for ease of calculations. An additional computation time saving procedure

that could be employed to save a small amount of time in the code would be the

use of a Taylor series approximation of all trigonometric functions. It is known that

trigonometric functions are computationally intensive to calculate, and using a few

terms of the Taylor series could reduce some of this time. A majority of the code has

been vectorized to decrease computation time, but some functions containing “for”

loops are called a large number of times during the simulation. This has a large

effect on the computation time by greatly increasing the number of computations

needed to be performed.

It has been mentioned that a similar solution procedure could be achieved

by implementation into any computer language. If field integration is an ultimate
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goal, consideration of other computer languages might be a possible future project.

MATLAB is an extremely high level computing language, and is well optimized for

linear algebra computations. Fortran, C, or C++ may be a more suited option

for development of a program which can be widely used by firefighters in the field.

Additionally, integration for use in the field needs to account for actual topography

of land, and more importantly real-time weather conditions. This would require

the integration of the model with national weather and land topography databases,

with constant real-time updates. This type of integration with real-time information

would be critical to the accuracy of the model since it is well known that weather

conditions and topography greatly effect the behavior of a fire.

As has been stated throughout this thesis, the model presented here was devel-

oped in the hope that a derivation using asymptotics and simplifying assumptions

could accurately capture the behavior of a fire and fire plume. Inspiration from many

sources, including the behavior of a flag flapping in the wind [1] and the behavior

of indoor fires [63], have been used in the beginning derivation of this model, but

ultimately as the derivation progressed, the approach became entirely novel. Re-

sults show that the model is a viable approach for predicting the behavior of these

simplified wildfires. This model presents a simple approach to a complex problem,

and in the hope that one day it will be used in the field, physical attributes need to

be balanced with the computation time to allow well informed decisions to be made

regarding firefighting efforts.
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APPENDIX A

Conservation Laws by Control Volume Argument

The derivation of the plume system in Chapter 2 is based on reducing the Navier-

Stokes equations to the one-dimensional transport equations of mass, momentum,

energy, and vorticity for flow in a narrow channel. However, this derivation is only

valid for a nearly vertical plume. In this Appendix, I present a derivation of the

same system from a conservation argument parametrized for a curvilinear coordinate

system.

A.1 Formulation

The plume need not be vertical, in fact, it is much more interesting to see

the plume react to its surroundings. Here, the plume is taken to be narrow and

(y1 p(s, τ), y3 p(s, τ)) is the plume centerline, where s is arc-length.

Let b(s, τ) be the width of the plume, and let the plume variables be defined

as follows: R is the density, V is velocity in the s direction (along the plume), w

is transverse velocity, Θ is temperature, and Ω is vorticity. Here s is the spatial

variable along the plume (i.e., tangent to the centerline), ν is the spatial variable

normal to the plume, see figure A.1. The essence of the control volume argument

is that all functions are parameterized with respect to arc-length, s. Specifically,

while V could depend on s, ν, and τ , it is assumed that it is a function of only

s and τ . Equations of mass, axial momentum, transverse momentum, energy, and

vorticity are derived by examining the balance of mass, momentum, and energy

for a control volume lying between an arbitrary location s along the plume and a

“nearby” location s+ ∆s.

The transverse momentum equation used for this derivation gives the result:

∂P

∂ν
= O(σ), (A.1.1)
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s+∆s

s
s

ν

v+out
v+in

v+in

Figure A.1: Entrainment Model and Conservation Coordinates in Upper
Half-Plane

which implies from the asymptotic expansion of pressure:

∂P (H)

∂ν
= 0

∂P (H1)

∂ν
= 0

∂P (1)

∂ν
= O(1).

This result is used in several of the derivations and can be seen in Section A.4.

The ?± notation denotes whether the outer, or ambient air variable, is evalu-

ated on the right or left side if the plume, respectively. Let v±in\out be the entrainment

or mixing velocity into or out of the plume. This means that v+
out is the velocity of

the air on the right-hand side of the plume being mixed out of the plume. Similarly

v+
in represents the velocity of the air on the right-hand side of the plume being mixed

into the plume, again see figure A.1.

A.2 Conservation of Mass

The rate of change of the mass in the control volume is equal to the net rate at

which mass enters the control volume, which is equal to the inflow rate minus the out-

flow rate. Namely, the mass in the control volume is taken as R(s, τ)b(s, τ)∆s∆y2,

where ∆y2 is the depth of the control volume (into the page). Then:

∂

∂τ
(Rb∆s∆y2) = flux in− flux out
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= RbV |s ∆y2 − RbV |s+∆s ∆y2 +R+
o v

+
in∆s∆y2

+R−o v
−
in∆s∆y2 −Rv+

out∆s∆y2 −Rv−out∆s∆y2

∂

∂τ
(Rb) =

RbV |s − RbV |s+∆s

∆s
+R+

o v
+
in +R−o v

−
in −Rv+

out −Rv−out.

Taking the limit as ∆s→ 0 gives:

∂

∂τ
(Rb) = − ∂

∂s
(RbV ) +R+

o v
+
in +R−o v

−
in −Rv+

out −Rv−out. (A.2.1)

Using the same scalings as in Chapter 2 and the fact that l3 ≈ l1, the scaled

mass equation can be written as:

∂

∂τ
(Rb) = − ∂

∂s
(RbV )+R+

o v
+
in+R−o v

−
in−Rv+

out−Rv−out = − ∂

∂s
(RbV )+Sm. (A.2.2)

A.3 Conservation of Axial Momentum

Again, the amount of momentum in the control volume is written as

R(s, τ)b(s, τ)V (s, τ)∆s∆y2. Then, the balance of momentum is expressed as:

∂

∂τ
(RbV∆s∆y2) = flux in− flux out + supply

= RbV 2
∣∣
s
∆y2 − RbV 2

∣∣
s+∆s

∆y2 +R+
o Vt+v

+
in∆s∆y2

+R−o Vt−v
−
in∆s∆y2 −RV v+

out∆s∆y2

−RV v−out∆s∆y2 + Pb|s ∆y2 − Pb|s+∆s ∆y2

+ P (b|s+∆s − b|s ) ∆y2 −Rbg||∆s∆y2. (A.3.1)

The second to last term expresses the difference in pressure force due to the variation

of the width of the control volume. Also, g|| is the component of gravity in the s

direction, g|| = g ∂y3
∂s

= geg ·T.

The expression for the pressure force due to the variation in the width of the

plume in (A.3.1) can be derived as follows. Upon examining Figure A.2, one can

see that:

1

2
b(s+ ∆s)− 1

2
b(s) ≈ 1

2
b(s) +

1

2
∆s

∂b

∂s
+ . . .− 1

2
b(s)
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Δs θ

b(s+Δs)

b(s)

P(s+Δs)

P(s)

P-n-

P+n+

θ P+sinθ

b(s+Δs)-   b(s)1
2

1
2 1

2

1
2

Figure A.2: Pressure on the Control Volume

=
1

2
∆s

∂b

∂s
+O(∆s2).

The vector P+n+ is resolved into its s and ν components as seen in Figure A.3.

Additionally, one can see that if ∂b
∂s

is small:

√
∆s2 +

(
∆s

2

∂b

∂s

)2

= ∆s

√
1 +

(
1

2

∂b

∂s

)2

≈ ∆s+ ∆s

(
1

2

(
∂b

∂s

)2
)

+ . . .

≈ ∆s,

and the two triangles in Figure A.3 are similar. From this it is seen that sin θ ≈ 1
2
∂b
∂s

and P+ sin θ = P+n+ · es ≈ 1
2
P+ ∂b

∂s
.
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P n+
P sinθ=P n+·es

θΔs θ

Δs
∂b
∂s

1
2

Δs2+( ∂b
∂s (2Δs

2

Figure A.3: Resolved Pressure Vector

A similar argument could be used to find the expression for P−, but since

equation (A.1.1) implies that the leading order pressures are equal on either side

of the plume, the expression is not needed. Thus, the contribution of the pressure

force due to the variations in the width of the plume in (A.3.1) is doubled.

After manipulation, (A.3.1) can be written as:

∂

∂τ
(RbV ) =

RbV 2|s − RbV 2|s+∆s

∆s
+R+

o Vt+v
+
in +R−o Vt−v

−
in−

RV v+
out −RV v−out +

Pb|s − Pb|s+∆s

∆s

+ P

(
b|s+∆s − b|s

∆s

)
−Rbg||.

Taking the limit as ∆s→ 0 yields the final form of the conservation of momentum

equation:

∂

∂τ
(RbV ) = − ∂

∂s
(RbV 2) +R+

o Vt+v
+
in +R−o Vt−v

−
in −RV v+

out −RV v−out

− b∂P
∂s
−Rbg||. (A.3.2)
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Using the asymptotic expansions for pressure, (2.2.7), where scalings similar

to what was used in the previous derivations are implied and the definition of β is

used, it is easily seen that:

∂P

∂s
=
∂y3

∂s

∂P

∂y3

(A.3.3)

= −g∂y3

∂s
. (A.3.4)

Thus,

∂

∂τ
(RbV ) = − ∂

∂s
(RbV 2) +R+

o Vt+v
+
in +R−o Vt−v

−
in −RV v+

out −RV v−out

+ (1−R)gb
∂y3

∂s
. (A.3.5)

The scaled axial momentum equation can be written in the same way as:

∂

∂τ
(RbV ) = − ∂

∂s
(RbV 2) +R+

o Vt+v
+
in +R−o Vt−v

−
in −RV v+

out −RV v−out

+
t20
l3

(1−R)gb
∂y3

∂s
∂

∂τ
(RbV ) = − ∂

∂s
(RbV 2) +R+

o Vt+v
+
in +R−o Vt−v

−
in −RV v+

out −RV v−out

+ (1−R)g̃b
∂y3

∂s
∂

∂τ
(RbV ) = − ∂

∂s
(RbV 2) + SM + (1−R)g̃b

∂y3

∂s
. (A.3.6)

A.4 Conservation of Transverse Momentum

The amount of transverse momentum in the control volume is written as

R(s, τ)b(s, τ)w(s, τ)∆s∆y2. The balance of momentum is expressed as:

∂

∂τ
(Rbw∆s∆y2) = flux in− flux out + supply

= RwbV |s ∆y2 − RwbV |s+∆s ∆y2 +R+
o Vn+v

+
in∆s∆y2

+R−o Vn−v
−
in∆s∆y2 −Rwv+

out∆s∆y2 −Rwv−out∆s∆y2

− P+∆y2∆s+ P−∆y2∆s−Rbg∂y3

∂ν
∆y2∆s. (A.4.1)
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Thus:

∂

∂τ
(Rbw) =

RbwV |s − RbwV |s+∆s

∆s
+R+

o Vn+v
+
in +R−o Vn−v

−
in −Rwv+

out

−Rwv−out − P+ + P− −Rbg∂y3

∂ν
.

Taking the limit as ∆s → 0 yields the conservation of transverse momentum

equation:

∂

∂τ
(Rbw) = − ∂

∂s
(RbwV ) +R+

o Vn+v
+
in +R−o Vn−v

−
in −Rwv+

out −Rwv−out −∆P

−Rbg∂y3

∂ν

= − ∂

∂s
(RbwV ) +R+

o Vn+v
+
in +R−o Vn−v

−
in −Rwv+

out −Rwv−out

−
∫ y1 p+ b

2

y1 p− b2

∂P

∂ν
ds−Rbg∂y3

∂ν

= − ∂

∂s
(RbwV ) +R+

o Vn+v
+
in +R−o Vn−v

−
in −Rwv+

out −Rwv−out − b
∂P

∂ν

−Rbg∂y3

∂ν
. (A.4.2)

The supply to the system represents the difference in pressure force due to

the variation of the width of the box and can be written as ∆P∆y2∆s. This was

derived by using a similar argument as in Section A.3 and Figure A.2. Only this

time, the ν component of P ·n+ was used. Additionally, the ν component of gravity

is used, instead of the tangential component as in Section A.3.

Again, it is known that:

∂P

∂ν
=
∂y3

∂ν

∂P

∂y3

(A.4.3)

= −g∂y3

∂ν
. (A.4.4)

Thus,

∂

∂τ
(Rbw) = − ∂

∂s
(RbwV ) +R+

o Vn+v
+
in +R−o Vn−v

−
in −Rwv+

out −Rwv−out
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+ (1−R)bg
∂y3

∂ν
. (A.4.5)

It is taken that b ∼ δ, where δ is small, and ∂
∂ν
∼ O(1

δ
). In the limit as δ → 0,

the convective and time derivative terms are small, whereas all other terms balance.

Thus:

b
∂P

∂ν
= R+

o Vn+v
+
in +R−o Vn−v

−
in −Rwv+

out −Rwv−out −Rbg
∂y3

∂ν
, (A.4.6)

which verifies (A.1.1) using (A.4.3). Using the asymptotic expansion of pressure, an

expression for transverse velocity can be written as:

w
(
R(v+

out + v−out)
)

= R+
o Vn+v

+
in +R−o Vn−v

−
in + (1−R)bg

∂y3

∂ν

w =
R+
o Vn+v

+
in +R−o Vn−v

−
in

R(v+
out + v−out)

+ (1−R)
bg ∂y3

∂ν

R(v+
out + v−out)

.

After accounting for the sign convention of the normal velocities outlined in Section

2.2.5.3, the expression becomes:

w =
R+
o Vn+v

+
in −R−o Vn−v−in

R(v+
out + v−out)

+ (1−R)
bg ∂y3

∂ν

R(v+
out + v−out)

,

and the scaled version is written as:

w =
R+
o Vn+v

+
in −R−o Vn−v−in

R(v+
out + v−out)

+
t20
l3

(1−R)
bg ∂y3

∂ν

R(v+
out + v−out)

w =
R+
o Vn+v

+
in −R−o Vn−v−in

R(v+
out + v−out)

+ (1−R)
bg̃ ∂y3

∂ν

R(v+
out + v−out)

. (A.4.7)

A.5 Conservation of Energy

The amount of energy in the control volume is written as

R(s, τ)b(s, τ)ΘCp(s, τ)∆s∆y2, and the balance of energy is expressed as:

∂

∂τ
(RbΘCp∆s∆y2) = flux in− flux out + supply

= RbVΘCp|s ∆y2 − RbVΘCp|s+∆s ∆y2 +R+
o θ

+
o Cp airv

+
in∆s∆y2
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+R−o θ
−
o Cp airv

−
in∆s∆y2 −RΘCpv

+
out∆s∆y2 −RΘCpv

−
out∆s∆y2

+ ∆s∆y2Qb

∂

∂τ
(RbΘCp) =

RbVΘCp|s − RbVΘCp|s+∆s

∆s
+R+

o θ
+
o Cp airv

+
in +R−o θ

−
o Cp airv

−
in

−RΘCpv
+
out −RΘCpv

−
out +Qb,

where Q is a heat source term due to the fire.

Taking the limit as ∆s→ 0 results in:

∂

∂τ
(RbΘCp) = − ∂

∂s
(RbVΘCp) +R+

o θ
+
o Cp airv

+
in +R−o θ

−
o Cp airv

−
in −RΘCpv

+
out

−RΘCpv
−
out +Qb. (A.5.1)

The scaled equation can be written as:

∂

∂τ
(RbΘCp) = − ∂

∂s
(RbVΘCp) +R+

o θ
+
o Cp airv

+
in +R−o θ

−
o Cp airv

−
in −RΘCpv

+
out

−RΘCpv
−
out + Q̃b

∂

∂τ
(RbΘCp) = − ∂

∂s
(RbVΘCp) + ST + Q̃b, (A.5.2)

where Q̃ = l3
ρ0v0T0Cp air

Q.

A.6 The Vorticity Equation

In order to derive the vorticity equation in curvilinear coordinates, the mo-

mentum equations are considered with the full two-dimensional influences. To do

this, the mass equation and two momentum equations, (2.1.1a) and (2.1.1b), are

written with their appropriate scalings as:

Rt + (Rv1)y1 + (Rv3)y3 = 0

R(v1 t + v1v1 y1 + v3v1 y3) + Py1 = T̃11 y1 + T̃13 y3

R(v3 t + v1v3 y1 + v3v3 y3) + Py3 +Rg = T̃31 y1 + T̃33 y3 .

Following the same procedure as before, the curl of the momentum equations
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is taken to write the vorticity equation as:

Ωτ + (v1Ω)y1 + (v3Ω)y3 =
Ry3

R2
Py1 −

Ry1

R2
Py3 +

Ry1

R2

[
T̃31 y1 + T̃33 y3

]
− Ry3

R2

[
T̃11 y1 + T̃13 y3

]
+

1

R

[
T̃11 y1y3 + T̃13 y3y3 −

(
T̃31 y1y1 + T̃33 y3y1

)]
. (A.6.1)

In the curvilinear coordinate system fixed to the plume, (A.6.1) is approximated by:

Ωτ + (wΩ)ν + (V Ω)s =
Rs

R2
Pν −

Rν

R2
Ps +

Rν

R2

[
T̃31 ν + T̃33 s

]
− Rs

R2

[
T̃11 ν + T̃13 s

]
+

1

R

[
T̃11 νs + T̃13 ss −

[
T̃31 νν + T̃33 sν

]]
. (A.6.2)

The vorticity equation (A.6.2) is integrated over the control volume. Each

term will generate a ∆y2, so the common term is simplified from each side. The

equation becomes:

∫ b
2

− b
2

∫ s+∆s

s

Ωτdsdν +

∫ s+∆s

s

∫ b
2

− b
2

(wΩ)νdνds+

∫ b
2

− b
2

∫ s+∆s

s

(V Ω)sdsdν =

+

∫ b
2

− b
2

∫ s+∆s

s

Rs

R2
Pν −

Rν

R2
Psdsdν + κ,

where,

κ =

∫ b
2

− b
2

∫ s+∆s

s

Rν

R2

[
T̃31 ν + T̃33 s

]
− Rs

R2

[
T̃11 ν + T̃13 s

]
+

1

R

[
T̃11 νs + T̃13 ss

−
[
T̃31 νν + T̃33 sν

]]
dsdν. (A.6.3)

Continuing to simplify by moving the derivatives through the integrals and evalu-

ating, the equation can be simplified to:

∆s(Ωb)τ − bτΩ∆s+ ∆s(wΩ)

∣∣∣∣ b2
− b

2

+ (V Ω)

∣∣∣∣s+∆s

s

b = −Pν
1

R

∣∣∣∣s+∆s

s

b+ Ps
1

R

∣∣∣∣ b2
− b

2

+ κ.

(A.6.4)

Here, on the boundary of the plume, R is the same on either side and the pressure

gradient in the ν direction is small (O(β)). Thus, the final vorticity equation is
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written as:

(Ωb)τ − bτΩ + (V Ω)sb = κ̃, (A.6.5)

where κ̃ = 1
∆s

κ − (wΩ)

∣∣∣∣ b2
− b

2

. This equation can be easily put into conservation form

to mirror the form of the remaining conservation laws by multiplying (A.6.5) by R

to obtain a conserved quantity. Also, let κ̄ = Rκ̃:

R(Ωb)τ −RbτΩ +R(V Ω)sb = κ̄ (A.6.6)

(RΩb)τ −RτΩb−RbτΩ + (RbV Ω)s − (Rb)sV Ω = κ̄ (A.6.7)

(RΩb)τ − (Rb)τΩ + (RbV Ω)s − (Rb)sV Ω = κ̄ (A.6.8)

(RΩb)τ + (RbV Ω)s = κ̄ + Ω((Rb)τ + V (Rb)s) (A.6.9)

(RΩb)τ + (RbV Ω)s = κ̄ + Ω(Sm − VsRb). (A.6.10)

The last step is achieved using the conservation of mass equation (A.2.2). The

source term, κ, is rewritten using the notation of the source terms of entrainment

as:

κ̄ =
R

b∆s

∫ b
2

− b
2

∫ s+∆s

s

Rν

R2

[
T̃31 ν + T̃33 s

]
− Rs

R2

[
T̃11 ν + T̃13 s

]
+

1

R

[
T̃11 νs + T̃13 ss −

[
T̃31 νν + T̃33 sν

]]
dsdν − R

b
(wΩ)

∣∣∣∣ b2
− b

2

.

For the purposes of this work, κ̄ will be written as κ̄ = R
b
SG. The source terms for

entrainment are obtained by Figure A.4, and can be written as SG = RoVt+
2
b
v+
in −

RoVt−
2
b
v−in −RΩv+

out −RΩv−out.

Thus, the scaled vorticity equation is written as:

(RΩb)τ + (RbV Ω)s =
R

b
SG + Ω(Sm − VsRb). (A.6.11)

With this, the system of final form conservation laws and vorticity equation
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s+∆s

s
s

ν

VsVs-   Ω
b
2 Vs+   Ωb

2

b(s)

b(s+∆s)

Figure A.4: Source of Entrainment of Vorticity

for the plume system in curvilinear coordinates fixed to the plume are obtained:

∂

∂τ
(Rb) = − ∂

∂s
(RbV ) + Sm (A.6.12a)

∂

∂τ
(RbV ) = − ∂

∂s
(RbV 2) + SM + (1−R)bg̃

∂y3

∂s
(A.6.12b)

w =
R+
o Vn+v

+
in −R−o Vn−v−in

R(v+
out + v−out)

+ (1−R)
bg̃ ∂y3

∂ν

R(v+
out + v−out)

(A.6.12c)

∂

∂τ
(RbΘCp) = − ∂

∂s
(RbVΘCp) + ST −RΘCpv

−
out + Q̃b. (A.6.12d)

∂

∂τ
(RbΩ) = − ∂

∂s
(RbV Ω) +

R

b
SG + Ω(Sm − VsRb), (A.6.12e)

where the transverse velocity equation is only used in Section 3.4. The remaining

equations are equivalent to (2.3.17a), (2.3.17c), (2.3.17d), and (2.3.17e), respectively

in Chapter 2.



APPENDIX B

Justification of Diffusive Scheme to Numerically Solve

System

In an exercise to determine which numerical scheme should be used to solve the

conservation laws for the plume system (A.6.12),

(Rb)τ + (RbV )s = Sm

(RbV )τ + (RbV 2)s = SM + (1−R)bg||

(RbΘCp)τ + (RbΘCpV )s = ST + bQ
1

Cp

(RbΩ)τ + (RbV Ω)s =
R

b
SG + Ω(Sm − VsRb),

several simplifications are considered. It is known that as a system, these equations

possess less-than-ideal properties. For instance, the system is defective, and thus is

not a strict-hyperbolic system. This poses an issue since most, if not all, standard

schemes were developed especially for the strict-hyperbolic case.

Following one of the exercises from LeVeque [38], several simplifications of the

above system are considered. Namely, the simplification down to the pressureless

gas equations will be closely examined here. To solve these simplified systems,

a Godunov approach is used, along with a simple upwind and diffusive scheme

following [15]. The results from the different schemes will be compared to determine

which scheme will be used in the full problem.

B.1 Uncoupled Simple System

Here, a system for density and velocity is considered. Thus, conservation of

mass and momentum are the only two equations remaining. This system can easily

be recognized as the pressureless gas equations [77]. Letting ρ be the density and v

166
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be the velocity, the system being considered is:

ρt + (ρv)x = 0 (B.1.1)

vt + (
1

2
v2)x = 0, (B.1.2)

where the initial and boundary conditions are chosen to be:

ρ(0, t) =
1

2

ρ(x, 0) = 1; x 6= 0

v(0, t) = 1

v(x, 0) = 0; x 6= 0,

which can be obtained by simplifying the above conservation of momentum equation

with the conservation of mass equation. Additionally, in this approach, one will

notice that (B.1.2) is uncoupled from (B.1.1). This means that (B.1.2) can be

solved first, and the newly calculated v can be used in (B.1.1).

B.1.1 Upwind

Considering (B.1.2) first, the upwind scheme is simply:

vn+1
k = vnk −

∆t

∆x

[
Fv(v

n
k , v

n
k+1)− Fv(vnk−1, v

n
k )
]
,

where,

Fv(ul, ur) =

 1
2
u2
l vnk + vnk−1 ≥ 0

1
2
u2
r vnk + vnk−1 < 0.

With the initial conditions considered, vnk ≥ 0, thus the upwind scheme is always:

vn+1
k = vnk −

∆t

2∆x
(vn 2
k − vn 2

k−1). (B.1.3)

Then, (B.1.1) is solved in the same way. The scheme is simply:

ρn+1
k = ρnk −

∆t

∆x
(Fρ(ρ

n
k , ρ

n
k+1)− Fρ(ρnk−1, ρ

n
k)),
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where,

Fρ(ul, ur) =

 ulv
n+1
l vn+1

k + vn+1
k−1 ≥ 0

urv
n+1
r vn+1

k + vn+1
k−1 < 0,

Again, with the initial conditions considered, vnk ≥ 0, thus the upwind scheme is

always:

ρn+1
k = ρnk −

∆t

∆x
(ρnkv

n+1
k − ρnk−1v

n+1
k−1 ). (B.1.4)

B.1.2 Godunov

In this implementation, Godunov’s method is almost identical to the above

upwind scheme, although this time, the condition is slightly changed. For (B.1.2),

it is taken that:

vn+1
k = vnk −

∆t

∆x

[
Fv(v

n
k , v

n
k+1)− Fv(vnk−1, v

n
k )
]
, (B.1.5)

where this time,

Fv(ul, ur) =

 fv(ul)
fv(ur)−fv(ul)

ur−ul
≥ 0

fv(ur)
fv(ur)−fv(ul)

ur−ul
< 0,

where fv(u?) = 1
2
u2
?, and ul, ur is the argument of Fv.

For (B.1.1), the process is the same. Here,

ρn+1
k = ρnk −

∆t

∆x

[
Fρ(ρ

n
k , ρ

n
k+1)− Fρ(ρnk−1, ρ

n
k)
]
, (B.1.6)

where this time,

Fρ(ul, ur) =

 fρ(ul)
fρ(ur)−fρ(ul)

ur−ul
≥ 0

fρ(ur)
fρ(ur)−fρ(ul)

ur−ul
< 0,

where fρ(u?) = u?v
n+1
? , and ul, ur is the argument of Fρ.
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B.1.3 Simplified Godunov

The simplified Godunov’s method is used to ensure all possibilities of the sign

of f ′(u) are considered, following LeVeque [38]. For (B.1.2), it is taken that:

vn+1
k = vnk −

∆t

∆x

[
Fv(v

n
k , v

n
k+1)− Fv(vnk−1, v

n
k )
]
, (B.1.7)

where this time,

Fv(ul, ur) =

 minul≤u≤ur fv(u) ul ≤ ur

minur≤u≤ul fv(u) ul > ur,

where fv(u?) = 1
2
u2
?, and ul, ur is the argument of Fv.

For (B.1.1), the process is the same. Thus,

ρn+1
k = ρnk −

∆t

∆x

[
Fρ(ρ

n
k , ρ

n
k+1)− Fρ(ρnk−1, ρ

n
k)
]
, (B.1.8)

where,

Fρ(ul, ur) =

 minul≤u≤ur fρ(u) ul ≤ ur

minur≤u≤ul fρ(u) ul > ur,

fρ(u?) = u?v
n+1
? , and ul, ur is the argument of Fρ.

B.1.4 Diffusive Scheme

When considering (B.1.2), following [15], the scheme is simply an upwind

scheme with an added second order derivative diffusive term. The second order

derivative is approximated using a second order difference equation to give:

vn+1
k = vnk −

∆t

∆x

[
Fv(v

n
k , v

n
k+1)− Fv(vnk−1, v

n
k )
]

+ ε
∆t

∆x2

1

ρnk

(
vnk−1 − 2vnk + vnk+1

)
,

where,

Fv(ul, ur) =

 1
2
u2
l vnk + vnk−1 ≥ 0

1
2
u2
r vnk + vnk−1 < 0.



170

0 20 40 60 80 100
−0.2

0

0.2
0.4

0.6

0.8
1

1.2

1.4
1.6

1.8

x

D
en

si
ty

Density Solution for Δx=0.625, Δt=0.061312, ε=0.001

 

 
Simplified Godunov
Godunov
Upwind
Diffusive

(a) Density Solution

0 20 40 60 80 100
−0.2

0

0.2
0.4

0.6

0.8
1

1.2

1.4
1.6

1.8

x

Ve
lo

ci
ty

Velocity Solution for Δx=0.625, Δt=0.061312, ε=0.001

 

 
Simplified Godunov
Godunov
Upwind
Diffusive
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Figure B.1: Solution to Uncoupled System

With the initial conditions considered, vnk ≥ 0, thus the upwind scheme is always:

vn+1
k = vnk −

∆t

2∆x
(vn 2
k − vn 2

k−1) + ε
∆t

∆x2

1

ρnk

(
vnk−1 − 2vnk + vnk+1

)
, (B.1.9)

where ε is a small parameter to be determined.

Then, (B.1.1) is solved following the upwind scheme in Section B.1.1:

ρn+1
k = ρnk −

∆t

∆x
(ρnkv

n+1
k − ρnk−1v

n+1
k−1 ). (B.1.10)

B.1.5 Numerical Results

The above schemes are implemented and the system is solved numerically.

Figure B.1 shows that the numerical results from the above schemes in fact agree

upon the same solution, and that solution is what one would expect the solution to

look like. All solutions are present, however, due to the agreement some solutions

are hidden underneath others.

It must be noted that the exact solution of the system in this section and all

following sections has not been computed. This is due to the fact that the analytical

solution of the pressureless gas is incredibly difficult to compute. The solution to

this system is simple enough that intuitively, the behavior of the exact solution is

known. It is understood that at this point, high level qualitative behavior can be
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determined and compared. Section B.6 addresses the issue of convergence and error

analysis.

It is also worth mentioning that the spike in the density is an expected feature

of the solution. On one part of the domain the air is moving, but in the other it

is not. Thus, there is a buildup of mass at the interface between the moving and

stationary air, which, in the case of the plume, can physically be explained by a

“puff” of air (an increase in the width of the plume).

B.2 Coupled Simple System

In this simplified system, again only density and velocity will be considered.

Thus, conservation of mass and momentum will be the only two equations remaining,

and again, this system can be recognized as the pressureless gas equations.

The system is clearly the same as in Section B.1, but this time, the equations

will be solved simultaneously to see if there is change in behavior when exploiting

the uncoupled velocity equation (see Section B.1). The system is written as:

yt + fx = 0 (B.2.1)

y = (ρ, v)T

f = (ρv,
1

2
v2)T .

B.2.1 Upwind

This time, both equations will be solved together, meaning (B.2.1) will be

solved. Thus,

yn+1
k = ynk −

∆t

∆x

[
F(ynk ,y

n
k+1)− F(ynk−1,y

n
k )
]
,

where,

F(ul,ur) =

 f(ul) vnk + vnk−1 ≥ 0

f(ur) vnk + vnk−1 < 0,

and f(u?) = (ρ?v?,
1
2
v2
?)
T . Again, with the initial conditions considered, vnk ≥ 0, thus
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the upwind scheme is always:

yn+1
k = ynk −

∆t

∆x

[
fnk − fnk−1

]
. (B.2.2)

B.2.2 Godunov

The same simplified Godunov scheme from above will be used, just in vector

form. The Godunov scheme will be rederived here as the definition of dividing by

a vector is unclear. Since the simplified Godunov and Godunov schemes in vector

notation are the same, only one is considered. As with all Godunov type schemes, a

Riemann problem is solved on each mesh spacing. The Riemann problem considered

is:

yt + fx = 0

y(x, 0) =

 yl x < 0

yr x > 0,

for t > 0 and x ∈ R. In quasi-linear form, this becomes:

yt + Ayx = 0

y(x, 0) =

 yl x < 0

yr x > 0,

where A = f ′ is the Jacobian matrix, and:

A =

v ρ

0 v

 .
It is clearly seen that the eigenvalues of this matrix are λ1 = v and λ2 = v,

with corresponding eigenvectors r1 = (1, 0)T , r2 = (0, 0)T . Thus, the system is

defective and clearly not strict-hyperbolic. Following LeVeque [38] to determine the

Hugoniot Locus, the Rankine-Hugoniot condition becomes:

ρ̃ṽ − ρ̂v̂ = s(ρ̃− ρ̂)
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1

2
(ṽ2 − v̂2) = s(ṽ − v̂),

where ỹ, ŷ are two connected states, and it is assumed that ŷ is known. Then,

solving for s and ṽ:

s = v̂ (B.2.3)

ṽ = v̂. (B.2.4)

With this, take:

ρ̃p(ξ; ŷ) = ρ̂(1 + ξ), (B.2.5)

for p = 1, 2, and here the p = 1 case is the same as the p = 2 case, except that

r1 6= r2. This is because λ1 = λ2, and normally ỹ1 would correspond to λ1, ỹ2 would

correspond to λ2, etc. Then, ṽ(ξ; ŷ) = v̂ and ỹp(ξ; ŷ) = ŷp + ρ̂ξr1, p = 1, 2. With

this, it can be verified that ∂
∂ξ

ỹp(0; ŷ) = ρ̂r1 ∝ r1 and sp(0; ŷ) = λp.

To explore the possibilities of shock waves and rarefactions, the theory behind

the problem needs to be examined. In particular, it needs to be established whether

or not the problem has a genuine non-linearity. To be genuinely non-linear, ∇λp(y) ·
rp(y) 6= 0 ∀y. Is is easy to verify, that for this system, (B.2.1), ∇λp(y) · rp(y) = 0

∀y. Thus, the entire system (both fields) is called linearly degenerate and cannot

contain shock waves or rarefactions, only contact discontinuities. This can be seen

in Figure B.2.

Using this, a typical solution of the Riemann problem can be explained. Start-

ing again with the Rankine-Hugoniot conditions between states y and ŷ, one has:

ρv − ρ̂v̂ = s(ρ− ρ̂)

1

2
(v2 − v̂2) = s(v − v̂),

and this time, it is taken that s = v = v̂. With this, it is trivial to see that the
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Figure B.2: Typical Solution to the Riemann Problem

Rankine-Hugoniot conditions are satisfied, and:

y − ŷ =

ρ− ρ̂
v − v̂


= (ρ− ρ̂)

1

0

 ∝ r1,

using s = v = v̂. Thus, the jump is in the direction r1, and by this exercise, it

would seem that the velocity is constant across the contact discontinuity. But, as

will be shown in Section B.4, given the nature of the plume and the characteristics

of Burgers’ equation, a discontinuous velocity will eventually form in this problem.

From this, the scheme becomes:

yn+1
k = ynk −

∆t

∆x

[
F(ynk ,y

n
k+1)− F(ynk−1,y

n
k )
]
, (B.2.6)

where this time,

F(ul,ur) =

 f(ul) vnk < 0

f(ur) vnk > 0,
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where f(u?) = (ρ?v?,
1
2
v2
?)
T , and ul,ur is the argument of F.

B.2.3 Diffusive Scheme

When coupling the equations, the scheme becomes,

yn+1
k = ynk −

∆t

∆x

[
F(ynk ,y

n
k+1)− F(ynk−1,y

n
k )
]

+ ε
∆t

∆x2
Ψ,

where,

F(ul,ur) =

 f(ul) vnk + vnk−1 ≥ 0

f(ur) vnk + vnk−1 < 0,

where f(u?) = (ρ?v?,
1
2
v2
?)
T and Ψ = (0, 1

ρnk

(
vnk−1 − 2vnk + vnk+1

)
)T . Again, with the

initial conditions considered, vnk ≥ 0, thus the upwind scheme is always:

yn+1
k = ynk −

∆t

∆x

[
fnk − fnk−1

]
+ ε

∆t

∆x2
Ψ. (B.2.7)

B.2.4 Numerical Results

Once again, the schemes were implemented to obtain the numerical results

shown in Figure B.3. The numerical results from the above schemes do agree with

each other and the results from the previous section. All solutions are present,

however, due to the agreement some solutions are hidden underneath others. With

the agreement between the coupled and uncoupled approaches, either method can

be used to obtain the same results.

B.3 Physically Conserved System

As with the previous two approaches, only density and velocity will be con-

sidered. But, this time, the physically conserved quantities will be examined. Thus,

the system being considered is:

ρt + (ρv)x = 0 (B.3.1)

(ρv)t + (ρv2)x = 0, (B.3.2)
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(b) Velocity Solution

Figure B.3: Solution to Coupled System

with initial and boundary conditions chosen to be:

ρ(0, t) =
1

2

ρ(x, 0) = 1; x 6= 0

ρv(0, t) =
1

2

ρv(x, 0) = 0; x 6= 0,

which can be obtained by setting the right-hand side of the unsimplified conservation

of mass and momentum equations to zero. Again, the equations will be solved

simultaneously, so the system is written as:

yt + fx = 0 (B.3.3)

y = (ρ, ρv)T = (u, ν)T

f = (ρv, ρv2)T =

(
ν,
ν2

u

)T
.

Using the fact that v = ν
u
, one can solve for u and ν and then calculate v.
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B.3.1 Upwind

As with Section B.2, both equations will be solved together, meaning (B.3.3)

will be solved. Thus the upwind method is:

yn+1
k = ynk −

∆t

∆x

[
F(ynk ,y

n
k+1)− F(ynk−1,y

n
k )
]
,

where,

F(ul,ur) =

 f(ul) vnk + vnk−1 ≥ 0

f(ur) vnk + vnk−1 < 0.

It is taken that f(u?) =
(
ν?,

ν2?
u?

)T
, and it is noted that vnk =

νnk
unk

. Again, with the

initial conditions considered, vnk ≥ 0, thus the upwind scheme is always:

yn+1
k = ynk −

∆t

∆x

[
fnk − fnk−1

]
. (B.3.4)

B.3.2 Godunov

The derivation of the vector Godunov scheme for this system is identical to

the previous section, and again, the Godunov scheme used is the vectorized form of

the scheme presented above. Here, the Riemann problem considered will be:

yt + fx = 0

y(x, 0) =

 yl x < 0

yr x > 0,

for t > 0 and x ∈ R. In quasi-linear form, this becomes:

yt + Ayx = 0

y(x, 0) =

 yl x < 0

yr x > 0,
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where A = f ′ is the Jacobian matrix, and:

A =

 0 1

−ν2

u
2 ν
u

 .
It is clearly seen that the eigenvalues of this matrix is λ1 = ν

u
, λ2 = ν

u
, with

corresponding eigenvectors r1 = (u
ν
, 1)T , r2 = (0, 0)T . Again, the system is defective

and clearly not strict-hyperbolic. Following LeVeque [38] in the same process as

before, by picking two connected states, expressions for s and ν̃ can be found:

s =
ν̂

û
(B.3.5)

ṽ =
ν̂ũ

û
. (B.3.6)

This time, with the choice of:

ũp(ξ; ŷ) = û(1 + ξ), (B.3.7)

it can be verified that ỹp(ξ; ŷ) = ŷp(1 + ξ) for p = 1, 2, ∂
∂ξ

ỹp(0; ŷ) = ν̂r1 ∝ r1, and

sp(0; ŷ) = λp.

The definition of genuine non-linearity is again used to determine whether or

not shock waves and rarefactions are present in this problem. It is easy to verify,

that for this system, (B.3.3), ∇λp(y) · rp(y) = 0 ∀y. Thus, the entire system (both

fields) is called linearly degenerate and cannot contain shock waves or rarefactions,

only contact discontinuities, as seen in Figure B.2.

Using this, a typical solution of the Riemann problem can be explained. Start-

ing again with the Rankine-Hugoniot conditions between states y and ŷ, one has:

ν − ν̂ = s(u− û)

ν2

u
− ν̂2

u
= s(ν − ν̂),

and this time, it is taken that s = ν
u

= ν̂
û
. With this, it is trivial to see that the



179

Rankine-Hugoniot conditions are satisfied using ν̂ = νû
u

, and:

y − ŷ =

u− û
ν − ν̂


=

 ρ− ρ̂
ρv − ρ̂v̂


= (ρ− ρ̂)

1

v


= (ρ− ρ̂)v

 1
v

1

 ∝ r1,

using s = ν
u

= ν̂
û
, and u

ν
= 1

v
. Thus, the jump is in the direction r1, and by this

exercise, it would seem that the velocity is constant across the contact discontinuity.

But again, as it will be shown in Section B.4, given the nature of the plume and the

characteristics of Burgers’ equation, a discontinuous velocity will eventually form in

this problem.

From this, the scheme becomes:

yn+1
k = ynk −

∆t

∆x

[
F(ynk ,y

n
k+1)− F(ynk−1,y

n
k )
]
, (B.3.8)

where this time,

F(ul,ur) =

 f(ul) vnk < 0

f(ur) vnk > 0,

where f(u?) = (ρ?v?,
1
2
v2
?)
T , and ul,ur is the argument of F.

B.3.3 Diffusive Scheme

Due to the nature of the way in which the diffusive scheme was derived, a

system written in full conservation form cannot be solved. The mass equation needs

to be used to simplify and decouple the momentum equation, as shown in the first

two systems.
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Figure B.4: Solution to Physically Conserved System

B.3.4 Numerical Results

The numerical schemes were implemented and Figure B.4 shows that the nu-

merical results from the above schemes are drastically different than the previous

sections. The Godunov scheme has blown up, and is not even present on the plot.

Even though equation (B.3.3) uses physically conserved quantities, it is easy to

see from the plots that this solution method doesn’t give an accurate or consistent

scheme for the problem. The discontinuity has been smeared by the numerical

scheme(s) and the jump is not even propagating with the correct speed.

B.4 Continuous Initial Data

Each of the above sections were tested again, this time with continuous initial

data for velocity. The continuous initial data was prescribed to only the velocity

equation. This is due to the fact that the issues for the system originate in the

velocity equation. Two different initial conditions were used, one which provided a

continuous profile at t = 0, and a second which slowly increased the value at x = 0

to create a profile continuous in time. The schemes used were exactly those above,

the new continuous data was applied to the systems in Sections B.1, B.2, and B.3.
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Figure B.5: Continuous Initial Data

B.4.1 Continuous Initial Data

The continuous initial data is given provided that the initial profile is continu-

ous at t = 0, then time progresses. Namely, the data used in the simplified problems

above, is:

ρ(x, 0) =

 1
2

x ≤ 0

1 x > 0,
(B.4.1)

and,

v(x, 0) =


1 x ≤ 0

1− x
25

0 < x < 25

0 x > 25,

(B.4.2)

as shown in Figure B.5. This initial data is used in the simplified problems above

to obtain the results below.

B.4.1.1 Uncoupled Simple System

The system from Section B.1 is rerun with the initial data, (B.4.1) and (B.4.2),

and the results are shown in Figure B.6. As no exact solution has been derived,

visually one can see that the four schemes used to solve this problem agree upon the

solution. The agreement is so well, that as before, some solutions are hidden under

others. Starting from the smooth initial condition, the value at x = 0 propagated to
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(b) Velocity Solution

Figure B.6: Solution to Uncoupled System With Continuous Initial Data

the right, until the solution forms a discontinuity. Once the shock appeared in the

solution, the whole discontinuity propagated as before. Visually, it seems as though

there was greater agreement between the various schemes, although this would be

better proved if an exact solution was present.

B.4.1.2 Coupled Simple System

The numerical solution of the system from Section B.2 is rerun with the new

initial data and the results are shown in Figure B.7. As it was seen when using the

discontinuous initial conditions, the agreement between schemes in Sections B.1 and

B.2 visually looks to be very good.

B.4.1.3 Physically Conserved System

The system from Section B.3 is rerun with the new initial data and the results

are shown in Figure B.8. Just as what was seen in the results from Section B.3,

the numerical results for this simulation is drastically different than what was seen

in the above two solutions. The Godunov scheme blows up instantly, and most of

the solution is not even represented on the plot. The upwind scheme smears the

discontinuity that forms from the continuous initial data, and when compared to

the solutions from the previous two solutions, the discontinuity in this simulation

travels more slowly.
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(b) Velocity Solution

Figure B.7: Solution to Coupled System With Continuous Initial Data
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Figure B.8: Solution to Physically Conserved System With Continuous
Initial Data

B.4.2 Initial Data Continuous in Time

This time, in an attempt to create a continuous profile in time, the value of

the velocity at x = 0 is slowly increased up to a value of 1. This slow increase

eliminates the discontinuity in the initial data and the solution, until the problem

creates one. Namely, the initial and boundary data used in this simplified problems
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is:

ρ(x, 0) =

 1
2

x ≤ 0

1 x > 0,
(B.4.3)

and,

v(x, 0) = 0

v(0, t) =
2t

N
for v(0, t) < 1. (B.4.4)

Again, this initial and boundary data is used in the simplified problems from Sections

B.1-B.3 to obtain the following results.

B.4.2.1 Uncoupled Simple System

The system from Section B.1 is rerun with the initial and boundary data,

(B.4.3) and (B.4.4). The numerical results are shown at different times throughout

the simulation including the final time, Tfinal = 100. Figure B.9 displays the numer-

ical results at three different times, so each row of figures represents the solution of

density and velocity, respectively, at different times. In the first row, t = 25, it can

be seen that the profile in v is growing from x = 0, but the solution has not yet

formed a discontinuity. At t = 50, the second row of figures in Figure B.9, the value

of v at x = 0 has reached its highest value. From this moment in time on, the value

from x = 0 will propagate to the right, causing the solution to form a discontinuity.

Once the discontinuity is formed, the familiar profile is formed at the final time,

which can be seen in the third row of figures in Figure B.9.

B.4.2.2 Coupled Simple System

The system from Section B.2 is rerun with the new initial and boundary data

and the results are shown at various times in Figure B.10. The plots show the

solution at t = 25, 50, and 100 in each row respectively. As with all previous sections

involving the coupled system, the results are very similar to the results obtained by

the uncoupled system. Visually, the solutions are identical, which attests to the

fact that using the uncoupled velocity equation makes little difference to the overall

solution.
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Figure B.9: Solution to Uncoupled System With Continuous in Time
Data
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Figure B.10: Solution to Coupled System With Continuous in Time Data
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B.4.2.3 Physically Conserved System

The system from Section B.3 is rerun with the new initial and boundary data

and the results are shown in Figure B.11. As one might expect, the physically

conserved system has the same qualities it had in the previous simulations. One

can see that at t = 25, the first row in Figure B.11, the Godunov scheme is present,

but its solution is far from what the solution should be. By t = 50, the second row

in Figure B.11, the Godunov scheme has blown up and is no longer shown in the

figure. The upwind scheme continues to smear the discontinuity and propagate the

at a slower speed, which can be seen in the third row of figures in Figure B.11.

B.5 Non-Homogeneous Simplified System

Just as with the continuous initial data, a source term very similar to what

is used in the full problem is added to the systems from Sections B.1, B.2 and B.3.

With the addition of a source term that depends on space, time, and velocity, the

exact solution is no longer known and intuition can no longer help. This makes an

analytical solution nearly impossible. It is also worth noting that this problem is

closest to the actual full problem being considered in this work. The source term is

added to the systems above and the results are below.

B.5.0.4 Uncoupled Simple System

The system from Section B.1 is rerun again, this time with the original initial

conditions and added non-homogeneous term. The numerical results are shown in

Figure B.12. The solution profiles are radically different from each other, and as

expected, the diffusive scheme smoothes the solution. The other schemes preserve

the spike in the density solution that was present in the other simplified problems,

although the amplitude is much lower due to the added source term. One should

note that the plot at the final time (shown here), is a near steady-state solution of

the system. If the simulation was run for longer times, the solution profile wouldn’t

change much from what is shown.
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Figure B.11: Solution to Physically Conserved System With Continuous
in Time Data
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0 20 40 60 80 100

0

0.5

1

1.5

2

x

Ve
lo

ci
ty

Velocity Solution for 6x=0.625, 6t=0.088456, ¡=0.5

 

 
Simplified Godunov
Godunov
Upwind
Diffusive

(b) Velocity Solution

Figure B.12: Solution to Uncoupled System With Source Term Added
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(b) Velocity Solution

Figure B.13: Solution to Coupled System With Source Term Added

B.5.0.5 Coupled Simple System

The system from Section B.2 is rerun again with the original initial condi-

tions and added non-homogeneous term. The numerical results are shown in Figure

B.13. The solution profiles of the upwind and diffusive schemes are the same as

they are for the non-homogeneous uncoupled systems. This was expected consid-

ering all of the other numerical results obtained. In this simulation it is seen that

the Godunov scheme results changed from the uncoupled problem, although both

Godunov solutions given are much different than the upwind or diffusive scheme.
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Figure B.14: Solution to Physically Conserved System With Source Term
Added

B.5.0.6 Physically Conserved System

The system from Section B.3 is rerun again with the original initial conditions

and added non-homogeneous term. The numerical results are shown in Figure B.14.

The upwind solution is the same shape as the other systems, except the density

solution has a slightly larger amplitude than the other simulations. The Godunov

scheme has blown up and is not present on the plot, just like the other simplified

problems.

B.6 Twilight Method Verification

As one will have noticed by now, all of the previous simplified problems have

not been verified with the exact solution and a convergence and error analysis has

not been performed. As explained above, this is due to the fact that finding the exact

solutions is difficult and impossible in some situations. The simplified problems were

used in conjunction with intuition to see which schemes could handle the problem

at hand.

In this section, a method will be used to compare the numerical solutions with

a prescribed exact solutions. Both the linear and quadratic exact solutions will be



191

considered in the solution of the problem:

ρt + (ρv)x = fρ (B.6.1)

vt + (
1

2
v2)x = fv, (B.6.2)

where the right-hand side is a prescribed forcing function. The same four schemes

(upwind, Godunov, simplified Godunov, and diffusive) will be used to solve this

problem.

B.6.1 Linear Exact Solution

For the linear exact solution, it is chosen that:

v̄ = 1 + t+ x (B.6.3)

ρ̄ = 1 + 2x+ 3t. (B.6.4)

These exact solutions are substituted into (B.6.1) and (B.6.2) respectively to obtain

the expressions for the forcing functions:

fv = 2 + t+ x (B.6.5)

fρ = 6 + 4x+ 5t. (B.6.6)

With this, (B.6.1) and (B.6.2) are solved numerically and compared to the

exact solution above. The relative errors, measured in the L2 norm, are shown in

Figure B.15 for various values of ∆x. In addition, convergence rates are given for

each scheme, which correspond to the known convergence rates of such schemes.

B.6.2 Quadratic Exact Solution

For the quadratic exact solution, it is chosen that:

v̄ = 1 + x+ t+ x2 + xt+ t2 (B.6.7)

ρ̄ = 1 + 2x+ 3t+ x2 + xt+ t2. (B.6.8)
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Error

del_x=2.500000e+00
v_upwind  v_diffusive  v_godunov  v_s_godunov  r_upwind  r_diffusive  r_godunov  r_s_godunov
1.184569e-01  1.184569e-01  1.184569e-01  1.184569e-01  8.435856e-02  8.435856e-02  8.435856e-02  8.435856e-02

del_x=1.250000e+00
v_upwind  v_diffusive  v_godunov  v_s_godunov  r_upwind  r_diffusive  r_godunov  r_s_godunov
5.955255e-02  5.955255e-02  5.955255e-02  5.955255e-02  4.236627e-02  4.236627e-02  4.236627e-02  4.236627e-02

del_x=6.250000e-01
v_upwind  v_diffusive  v_godunov  v_s_godunov  r_upwind  r_diffusive  r_godunov  r_s_godunov
2.989300e-02  2.989300e-02  2.989300e-02  2.989300e-02  2.124019e-02  2.124019e-02  2.124019e-02  2.124019e-02

del_x=3.125000e-01
v_upwind  v_diffusive  v_godunov  v_s_godunov  r_upwind  r_diffusive  r_godunov  r_s_godunov
1.501152e-02  1.501152e-02  1.501152e-02  1.501152e-02  1.064456e-02  1.064456e-02  1.064456e-02  1.064456e-02

del_x=1.562500e-01
v_upwind  v_diffusive  v_godunov  v_s_godunov  r_upwind  r_diffusive  r_godunov  r_s_godunov
7.557859e-03  7.557858e-03  7.557859e-03  7.557859e-03  5.338587e-03  5.338587e-03  5.338587e-03  5.338587e-03

Convergence
v_upwind  v_diffusive  v_godunov  v_s_godunov  r_upwind  r_diffusive  r_godunov  r_s_godunov
0.992127  0.992127  0.992127  0.992127  0.993618  0.993618  0.993618  0.993618
0.994356  0.994356  0.994356  0.994356  0.996119  0.996119  0.996119  0.996119
0.993737  0.993737  0.993737  0.993737  0.996680  0.996680  0.996680  0.996680
0.990021  0.990021  0.990021  0.990021  0.995587  0.995587  0.995587  0.995587

Figure B.15: Relative Error and Convergence Rate for Linear Exact So-
lution

These exact solutions are substituted into (B.6.1) and (B.6.2) respectively to obtain

the expressions for the forcing functions:

fv = 2 + 4x+ 3x2 + 2x3 + 4t+ 4tx+ 3tx2 + 2t2 + 3t2x+ t3 (B.6.9)

fv diffusive = 2 + 4x+ 3x2 + 2x3 + 4t+ 4tx+ 3tx2 + 2t2 + 3t2x+ t3 − 2ε (B.6.10)

fρ = 6 + 9x+ 9x2 + 4x3 + 9t+ 14tx+ 6tx2 + 7t2 + 6t2x+ 2t3. (B.6.11)

One will notice that the forcing function for the diffusive scheme requires an

additional term. This is because the diffusive scheme actually solves the PDE:

vt + (
1

2
v2)x = εvxx + fv diffusive. (B.6.12)

The extra diffusive term is reflected in the forcing function. With this, (B.6.1)

and (B.6.2) are solved numerically and compared to the exact solution above. The

relative errors, measured in the L2 norm, are shown in Figure B.16 for various values

of ∆x. In addition, convergence rates are given for each scheme, which correspond

to the known convergence rates of such schemes.

Throughout this section, results make it easy to see that all schemes are first
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Error

del_x=2.500000e+00
v_upwind  v_diffusive  v_godunov  v_s_godunov  r_upwind  r_diffusive  r_godunov  r_s_godunov
3.821490e-01  3.821489e-01  3.821490e-01  3.821490e-01  3.706054e-01  3.706055e-01  3.706054e-01  3.706054e-01

del_x=1.666667e+00
v_upwind  v_diffusive  v_godunov  v_s_godunov  r_upwind  r_diffusive  r_godunov  r_s_godunov
2.546934e-01  2.546933e-01  2.546934e-01  2.546934e-01  2.470058e-01  2.470059e-01  2.470058e-01  2.470058e-01

del_x=1.250000e+00
v_upwind  v_diffusive  v_godunov  v_s_godunov  r_upwind  r_diffusive  r_godunov  r_s_godunov
1.909931e-01  1.909930e-01  1.909931e-01  1.909931e-01  1.852277e-01  1.852278e-01  1.852277e-01  1.852277e-01

del_x=1.000000e+00
v_upwind  v_diffusive  v_godunov  v_s_godunov  r_upwind  r_diffusive  r_godunov  r_s_godunov
1.527829e-01  1.527827e-01  1.527829e-01  1.527829e-01  1.481687e-01  1.481688e-01  1.481687e-01  1.481687e-01

del_x=8.333333e-01
v_upwind  v_diffusive  v_godunov  v_s_godunov  r_upwind  r_diffusive  r_godunov  r_s_godunov
1.273138e-01  1.273136e-01  1.273138e-01  1.273138e-01  1.234663e-01  1.234664e-01  1.234663e-01  1.234663e-01

Convergence
v_upwind  v_diffusive  v_godunov  v_s_godunov  r_upwind  r_diffusive  r_godunov  r_s_godunov
1.000703  1.000703  1.000703  1.000703  1.000644  1.000643  1.000644  1.000644
1.000490  1.000491  1.000490  1.000490  1.000501  1.000500  1.000501  1.000501
1.000341  1.000342  1.000341  1.000341  1.000406  1.000405  1.000406  1.000406
1.000229  1.000230  1.000229  1.000229  1.000340  1.000340  1.000340  1.000340

Figure B.16: Relative Error and Convergence Rate for Quadratic Exact
Solution

order, convergent, and accurate. In theory, this means any of the considered schemes

can be used in the full problems without issue. However, this is not the case. When

taking this and the solutions to the simplified problems above into consideration,

the following conclusions can be drawn.

B.7 Conclusions

The process of deciding which scheme to use for the full problem has been

outlined in Figure B.17. The full problem was reduced to simpler problems, which

isolated physically conserved quantities from elementary variables. From the results

of all of the simplified problems examined in this exercise, it can easily be seen that

the focus should be on the elementary variables. Finally, it needed to be decided

upon which scheme to use in the full problem. Clearly the correct choice from the

above simplified problems suggests that the diffusive scheme should be used in the

full problem. This choice is reinforced by the fact that even though this scheme is

first order, it correctly captures the features of the known simple solutions. Even

though the analytic solution for the simplified problem with the source terms is not

known, it is taken that the diffusive scheme can capture those features correctly as
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Figure B.17: Decision Tree to Find Scheme for Full Problem

well.

An appropriate value of ε is something that needed to be determined through

numerical experiments. A relatively low value is needed to damp oscillations that

form in the full problem, while preserving the behavior of the solution. The scheme

is implemented using the coupled simplified system solution method. The depen-

dence of the numerical solution on ε was investigated, although these results are

not presented here. A reasonable value of ε = .005 has been determined to be

appropriate for this model.

It is also worth mentioning that using the calculations leading to the decision

procedure, following LeVeque’s exercises [38], one might expect the velocity across

the contact discontinuity in the problem to be constant. Although this solution

has been shown to satisfy the jump conditions, it also shows that a discontinuous

velocity is inherent given the nature of the fire plume problem. The discontinuity in

the velocity stems from the fact that the velocity toward the bottom of the plume is

faster than the velocity toward the top of the plume. From Burgers’ equation, the

characteristics in this situation will clearly cross, indicating a discontinuity. This

jump in the velocity creates the jump, and results in the collection of mass in the

spike present in the density.


