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ABSTRACT

This thesis presents a comparison of four commonly used neural network models

for learning to classify and encode short text sequences. We first evaluate the

performance of the models for a supervised classification task on three short text

datasets. The results of these tests suggest that performance can be dependent

on a combination of the model architecture and the complexity of features desired

to be learned. We then train each model on a semi-supervised learning task with

a K-means clustering objective for one of the short text datasets, after which we

encode the dataset with the trained models and perform clustering on the encoded

representations. The results of clustering reveal that a model’s performance in the

classification task does not necessarily correlate positively to its performance in the

semi-supervised task and we relate these observations to data about each model’s

behavior during learning. Overall we find that if a model does not learn to largely

separate its feature representations too quickly, it may have a better chance at

clustering due to an increased ability to correct initial alignment mistakes. These

insights provide guidance to future work in which more complex models will be used

and knowledge bases will be constructed using raw text scraped from the web.

vii



1. INTRODUCTION

1.1 Purpose

We perform a comparison of four neural network architectures used for natural

language understanding (NLU) by reviewing their performance on several learning

tasks with short text datasets. Specifically, given a labeled dataset of short text

sequences (sentences), we use several variants of either a fully-connected neural net-

work (FCNN), a convolutional neural network (CNN) or a recurrent neural network

(RNN) to classify the data or learn useful representations for the data through a

semi-supervised task. A comparative study of model behavior and performance

during each task reveals useful insights into the strengths and shortcomings of each

architecture.

It is a well-known fact that efficiently representing short text sequences to a

machine is a challenging task, therefore we expect the performance of most NLU

models to be largely dependent on the fashion by which the data is presented. Addi-

tionally, we observe that the greedy nature of the usually unbounded task setup for

neural network training tends to create a bias towards learning spatially dependent

features. With careful task design and slight supervision, a neural network can be

coerced to extract higher level features from data.

1.2 Significance

Humans and machines continuously work together. The ability of a machine

to perform natural language understanding (NLU) tasks at a human level is pivotal

in the advancement of artificially intelligent systems and human knowledge. Since

it is common to use human-level metrics to evaluate machine learning models, it is

only logical that machines should understand the dominant way in which humans

communicate and store information—written and spoken natural language. The

motivation for using neural architectures for NLU tasks comes from the fact that

these models automatically learn to extract relevant features from their input data

through an end-to-end trainable task. This offloads the otherwise daunting task of

1
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performing manual feature extraction on text data and allows for gradient descent

optimization.

Natural language understanding is quickly becoming a requirement for state-

of-the art technology that is included in many products from automobiles and con-

sumer electronics to large scale data mining systems. More and more businesses are

integrating dialog systems into their products so that their users can enjoy a per-

sonal experience rather than having to navigate a website. Successful dialog systems

must be able to hold a realistic conversation while helping a user reach their goals.

This includes understanding low-level features like sentence topics, understanding

high-level features like the goals, or intents, within questions, remaining robust to

noise like improper grammar and spelling errors, and being specific enough to detect

small differences in the inputs like synonyms and changing context. In data min-

ing systems, access to the information stored in text is extremely beneficial. There

is a vast amount of information stored in natural language, but only a fraction is

conveniently available to us while the rest is contained in high-level semantic forms.

Discovery of this information is critical for next generation knowledge extraction

systems and the solution to solving this problem has been challenging for machines

and humans because of the highly expressive properties of language.

1.3 Difficulty

Consider the sentence, “What was Bob thinking?”. We can quickly detect

that this sentence is syntactically correct, and that it is actually a question. It is

slightly more challenging to break the sentence into the important words what, Bob

and thinking, in order to interpolate that the intent within this question may be to

determine the specific thoughts that are in Bob’s head. With prior knowledge about

the semantics of modern language, we could speculate that this sentence may not

really be a question at all, but more of a statement expressing one’s dislike towards

Bob’s decisions. Some NLU systems would have trouble reaching this consideration

since none of the words in the sentence directly indicate any negative sentiment

towards the subject of the sentence (Bob). It is significantly more challenging to

identify the mechanisms responsible for detecting these high-level semantic features
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from such a simple sequence of words. Many of the detected features that allow these

hypotheses to be made by humans, ironically remain elusive to us. This suggests

that successful NLU models should discover these features automatically, without

the explicit prior knowledge of their existence.

Now consider the sentence, “What was Bob thinking about?”. The sentiment

of this new sentence is very different than that of the original, although the literal

intent of the two sentences is essentially identical. It is difficult to target which

features are responsible for the difference in perception between the two sentences

above, therefore attempting to create a rule-based system to detect these differences

would probably not generalize well to similar cases in the future. Instead, machine

learning methods are used to extract useful features in an unsupervised manner,

targeting them through clever design of goals and constraints within the problem.

Since most data is not labeled with respect to the unknown features being

investigated, it is common to group data based on learned similarity measures that

attempt to capture dependencies between these features. This is the motivation be-

hind clustering, in which data sharing common features is grouped together, usually

by transformation to a new space that linearly separates feature dependencies. Dis-

covering this transformation space is a challenging problem, since prior knowledge

of the transformation space implies knowledge about the specific features we are

looking for.

Currently, many NLU models that achieve state-of-the art performance involve

“enriching” text with heavily engineered rule-based systems that require extensive

data preprocessing in order to expose useful features [1], [2], [3], [4]. In contrast,

recent success is drawing attention towards NLU models that utilize neural network

architectures that can learn to automatically detect useful features from text [5],

[6], [7], [8], [9]. Analogous to the expansion in progress made while using neural ar-

chitectures for image analysis, these models also demonstrate their powerful feature

extraction abilities on natural language datasets. We focus mainly on solutions of

this latter form for the comparisons accomplished in this research.
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1.4 Language Space

The space in which natural language resides is very different than that of other

data forms like images and sounds. Images and sounds reside within a continuous

space whereas the structure of natural language is non-continuous and logically

complex, consisting of values only for words that exist within a quantized vocabulary.

Short sentences produce additional difficulties, since they comprise a small subset

of a relatively large vocabulary. Also, the frequency of which words are used within

a vocabulary is very unbalanced, as words that syntactically bind sentences (the,

if, and, etc.) are used many more times than most other words. Words that are

used very rarely are sometimes vital to understanding important aspects about a

sentence, especially when that sentence contains few words.

The properties above violate assumptions that are made for a variety of ma-

chine learning problems. Therefore, some models that achieve great performance

on non-sparse datasets, like images or very large documents, end up performing

poorly when given a short text dataset. It is common practice to attempt to mit-

igate the effects of sparseness altogether by representing words as vectors rather

than indices of a vocabulary. Additionally, many pre-processing techniques exist

to shorten vocabularies, such as the removal of infrequent words, words that carry

little information and words that are redundant. We will discuss these issues and

solutions in more detail in later sections.

1.5 Contributions

This work highlights some of the advances in using neural networks for the

extraction of information from text. We perform a survey of some of the traditional

methods used for representing text data to machines, and we investigate the prob-

lems that result when the data consists of short sentences. The main contribution

of this work involves a comparison of several neural network models that achieve

state-of-the-art performance in NLU tasks with short text datasets. Initially, we

compare models on a fully supervised classification task and we analyze the qual-

ity of automatic feature extraction through component analysis. We then use the

models to encode text sequences into a low-dimensional embedding space using a
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semi-supervised learning task. Clustering is performed in this low-dimensional space

and results are compared to clustering on traditional text representation methods.

We focus on evaluating feature encoded data with clustering techniques because we

would like to investigate the ability of the models to learn feature vectors that are

separable in the low-dimensional embedded space. From this analysis, we discern

relationships from common success points and failures in order to provide insight

into the underlying structure of natural language. We conclude by discussing possi-

ble improvements that could be made in the quality of extracted features from short

text.



2. BACKGROUND

2.1 Clustering

Clustering is the process of organizing data into groups, in which data samples

from the same group are more similar to each other than data samples from different

groups. The choice of how to represent the data and the measure used for “simi-

larity” is a heavily researched topic involving many different approaches. Usually,

data is represented by a vector of extracted features and clustering is performed on

these feature vectors. The similarity measure used can range from simple Euclidean

distances in vector space, cosine similarity measures, or any other operation that

can capture desired similarity relationships between the feature representation of

the data samples. Due to the motive of organizing data into groups, clustering is

usually performed in an unsupervised manner in which labeled data is unavailable,

but techniques exist that leverage small amounts of labeled data for semi-supervised

approaches. Ideally, the clusters formed from encoded feature vectors would take

the form of simple, convex shapes that can be linearly separated in the feature space.

2.1.1 K-means Algorithm

The K-means clustering algorithm involves grouping samples in feature space

by their Euclidean distance to a set of “representative” points in the feature space.

These representative points take the values of the cluster means and are continu-

ously updated as samples in the feature space are assigned to their clusters. Initially,

the cluster means are chosen randomly and samples in feature space are assigned to

the cluster corresponding to the closest cluster mean. After assigning all samples,

the cluster means are updated to the mean of all the samples currently belonging

to the cluster and the process is repeated to assign each of the samples to clusters

corresponding to the updated means. The algorithm is stopped once the difference

between cluster means from two consecutive iterations is below some threshold,

indicating that samples have been stably assigned to clusters and not much reas-

signment is further occurring. Since the K-means algorithm uses a distance metric

6
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to discriminate between clusters, the algorithm works best for samples in feature

space that form convex cluster shapes [10].

2.2 Neural Networks

Neural networks are machine learning models inspired by the networks of neu-

rons that make up the brain. These models consist of a network of neural processing

units connected together by weights that produce complex transformations of input

data in order to minimize a task-specific objective function.

2.2.1 Fully Connected Neural Networks

A fully connected neural network (FCNN) consists of multiple layers of neu-

rons that have connections only to neurons of adjacent layers in the network. These

networks fall within the class of feed-forward neural networks because signals strictly

propagate forward through the network from inputs to outputs, with no signals be-

tween neurons of the same layer. FCNN’s have demonstrated the ability to learn

mappings of complex, non-linear data to simpler spaces that can be linearly sepa-

rated. Autoencoders (AE’s) are neural networks that are trained to reconstruct the

data provided to them as inputs [11]. Usually, an AE is implemented using a FCNN,

but it is becoming more popular to use CNN’s and RNN’s for the main architecture.

The input and output layers share the same dimensionality as the input data and

any middle, or hidden, layers usually have lower dimensionality as the input data.

The motivation for using an autoencoder is similar to that of using other dimension-

ality reduction techniques such as Principle Component Analysis (PCA), since the

activations of the neurons in the hidden layer learn to respond to important features

and create lower dimensional encodings of the input data.

2.2.2 Convolutional Neural Networks

Convolutional neural networks (CNN’s) replace fully-connected neural net-

work layers by sweeping small filters across inputs from a previous layer in order to

produce activations for a current layer. The output of each layer within the CNN is

calculated by convolving a set of filters for that layer with the output of the previous
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layer. Each filter is analogous to a neuron with a small amount of inputs (usually 9

or 25) being swept across a field of view as it produces output values from its inputs

at each location during the sweep. In order to compress information, it is common

to include an additional convolution at each layer that uses filters that output the

maximum value of their inputs, or the average value from their inputs. These layers

are called max pooling layers and average pooling layers respectively. It is common

to include a fully-connected layer or two at the output of a CNN in order to improve

expression and transform the output to a vectorized form. Due to the convolution

operation and reuse of filters as they sweep across an input, CNN’s can have drasti-

cally fewer parameters than fully-connected neural networks, yet tend to outperform

many fully-connected neural networks models for tasks like image recognition and

regression.

2.2.3 Recurrent Neural Networks

A recurrent neural network (RNN) uses feedback loops in order to process

time-separated sequences of data alongside its outputs from previous time steps.

The most basic RNN is a single neural network that produces an output at time

t from its input at time t and its output at time t � 1. When input sequences

become long, this basic model can lose sight of context that is far back in time.

Also, during training, gradients through long sequences of time have a tendency to

vanish or explode, causing training to slow or even halt. One of the most commonly

RNN models used to address these issues is Long Short-Term Memory (LSTM) [12].

The LSTM model was designed to reduce the effects of unstable gradients as well

as improve the ability for an RNN to remember information far back in time. An

LSTM network consists of multiple neural networks that can store information in

weights like long-term memory as well as control how information flows sequentially

through time like short-term memory.

2.3 Input Representations for Text and Documents

Systems built for NLU tasks start with a vocabulary, or a data structure in

memory of a usually large but finite collection of words. This vocabulary is usually
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constructed from the words contained within a corpus of text sequences, or from a

massive corpus of words scraped from online sources like Wikipedia. Since language

vocabularies are very large, it is common practice to use techniques that minimize

repetition and remove words of low-importance in attempt to minimize the size of

the vocabulary. We give a brief overview of these simplifications below, as well as a

review of some of the methods used to represent sentences given a vocabulary.

2.3.1 Vocabulary Simplification

A large contribution to the size of a vocabulary can be due to synonyms that

share identical information, or frequently used words that contain little information,

but provide syntactic functionality for the rest of the information-rich words. One

method for greatly reducing the size of a vocabulary is suffix stripping [13] (usually

referred to as word stemming), in which any extended words are reduced to their

root word before constructing a vocabulary. For example the words, ran, running,

runner and runs would all be converted to the root word, run, removing the need

for explicit entries in the vocabulary for each of the variants that include a suffix.

Additionally, frequently used words, or stop-words, that syntactically bind sentences

like the, if or and, can be removed from text data before a vocabulary is constructed

in order to reduce its size. Removal of these words may break proper syntax, but

they carry little information and therefore most features present in the original text

are unaffected. Careful consideration must still take place to decide which stop-

words to remove—we certainly would not want to remove words like where, when or

who when attempting to extract features used to cluster different types of questions.

2.3.2 Bag of Words

A bag of words (BOW) vector is a vocabulary length vector representation for

a sequence of text. The ith element of a BOW vector for a sequence of text takes

a value equal to the amount of times the ith word in the vocabulary occurs in that

sequence—this is usually referred to as the Term Frequency weighting for that word.

BOW vectors are sometimes normalized to have values between 0 and 1 and can be

further processed to add importance to specific words that hold more information

than others.
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2.3.3 TF-IDF

It is common to encode a sequence of text with an Inverse Document Fre-

quency (TF-IDF) vector, which is similar to BOW but takes the frequency of a

word throughout an entire corpus of text sequences into account as well [14], [15].

As in BOW, the weights of the vector for a text sequence are initially calculated

according to the term frequency. The weight given to each word’s index is then

inversely scaled by the frequency of that word appearing within the entire corpus

of text sequences—called the Document Frequency. The formula we use for the TF-

IDF weighting is shown by Equation 2.1, where wi is the weight for the ith index of

the TF-IDF vector, ti is the term frequency for word i, di is the document frequency

for word i, N is the total number of documents or text sequences and jV j is the size

of the vocabulary. We can see from Equation 2.1 that the importance, or weight,

of a word increases with increased frequency of use within a specific text sequence,

and decreases with increased frequency of use throughout the entire corpus of text

sequences.

wi = ti log
N

di

8i = 1:::jV j (2.1)

2.3.4 Limitations

While interesting results have been achieved when representing long sequences

of text with BOW and TF-IDF vectors, representing short sequences of text exposes

the limitations of these techniques. Short sequences of text contain a very small

subset of the overall vocabulary which results in sentences being represented by

sparse high-dimensional vectors. These vectors mostly contain zero values, therefore

it can be difficult to efficiently extract information from these representations. BOW

and TF-IDF vectors also destroy word order when encoding a text sequence. In long

text sequences, dropping word order may not be much of a problem, but for short

text sequences the meaning of a sentence can be completely dependent on word

order. Finally, since BOW and TF-IDF vectors cannot capture similarities between

synonyms, sentences which consist of completely different words, but share the exact

same meaning, will share little similarity in BOW or TF-IDF vector space.
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2.3.5 Word Vectors

The problems faced with using BOW and TF-IDF vectors are addressed by

representing each word within a text sequence with a unique vector of fixed di-

mension, in which related words result in similar vectors. One popular method for

calculating word vectors that satisfies this requirement is the skip-gram model, in

which an autoencoder is fed with single words from text and trained to reconstruct

nearby surrounding words [16]. As a result, the hidden layer activations of the

autoencoder learn to capture syntactic and semantic relationships between words

commonly appearing next to each other in the training data. These relationships

have even been shown to map arithmetic operations in the word vector space to

correct predictions in the language space.

Word vectors usually have dimensions of magnitude 101 or 102 elements, there-

fore sparsity is not as much an issue. A sentence can be represented by a sequence

of word vectors stored as a matrix and word order can be preserved over rows of the

matrix. Additionally, since synonym relationships can be reflected in word vectors,

the ability to determine similarity between same-meaning sentences with completely

different words is improved. An example of encoding a short text sequence into a

word vector matrix, or word embedding, can be seen in Figure 2.1. A row in the

word embedding is a word vector and a column represents a single feature from the

word vector. There are n = 4 words for the sentence embedded in Figure 2.1 and

each word is encoded by a word vector wi 2 Rd, therefore the embedding is in Rn�d.

Figure 2.1: Word embedding matrix.
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2.4 Features in Text

A common data preprocessing technique used in the field of NLU is to man-

ually extract features from text in order to“enrich” its representation and amplify

important information. Syntactic features represent the grammatical structure of

text, therefore these features can usually be extracted efficiently using a rule-based

method. Semantic features represent high-level abstract ideas, therefore these fea-

tures are more difficult to extract and manually defining them is a challenge.

2.4.1 Syntactic Features

Some of the most common syntactic features that are extracted from text data

are part-of-speech tags (POS tags), which are word-type categories (noun, adjective,

verb, etc.) assigned to each word in a text sequence. From POS tags, higher-level

syntactic features can be constructed from groups or patterns of specific tags—as

performed in [1]. The information that these features represent is largely dependent

on the physical structure of text, therefore it is hard to draw conclusions about

higher-level ideas from this information alone.

2.4.2 Semantic Features

There are many semantic features that can be extracted from text, including

more that have yet to be discovered. Basic semantic features for text can include

topic, sentiment, intention, and if the text is a question, question-type and answer-

type [1], [2], [3]. Topic features describe the field of raw information discussed within

a text sequence, and can usually be extracted using rule-based methods. Sentiment

describes a text sequence by either having a positive attitude or a negative attitude,

requiring a slightly richer understanding of the relationships between words in the

text. Intention indicates the goals of the text sequence, or the person who produced

the text sequence, requiring not only an understanding of the relationships between

words in the text, but prior knowledge of patterns present in the language as a whole.

Question-type and answer-type features describe the category of information desired

from a text sequence query and are closely related to intention.



3. RELATED WORK

3.1 Text Enrichment

There are many research efforts gaining progress in the field of text representa-

tion for machines and many popular methods involve the use of manually designed

feature extractors for text enrichment. The text is then represented in the new data

space defined by these targeted features.

The work in [1] shows the benefits of text enrichment with a model that

achieves state-of-the-art results on a coarse-grained question-type and fine-grained

question-type classification task. The coarse-grained task contains 6 question-type

categories whereas the fine grained task contains 50 question-type categories, derived

as sub-categories of the coarse labels. Text enrichment is achieved by representing

text samples with one of six feature-sets. These feature-sets are derived using a

series of manual lower-level feature extraction techniques, such as POS-tagging,

named entity tagging and pre-trained classifiers from previous work done by the

authors. The text data used for training the model in [1] was manually labeled

by the authors and is available for use online [17]. The original questions used for

the text data were collected from the TREC competition datasets [18]. Since the

work in [1], many approaches for the question-type classification have emerged that

similarly involve pre-processing steps of manual feature extraction [19], [20], [21].

The question-type attribute extracted above is leveraged as one of several

higher-level features used to represent text for cluster analysis in [2]. In this study,

K-means clustering is performed on Yahoo Answers queries by pre-processing the

short text sequences through a carefully designed feature generator stream. The

enriched representations are then clustered for the analysis. The representation for

a short text sequence is a combination of tagged key-topic words, tagged answer-

type words, tagged words that modify key-topic or answer-type words, question-type

classification, synonyms, and relevance measures returned by search engine queries.

Although the authors show that this feature representation can efficiently group

syntactically and semantically related short text sequences, the overhead to do so

13
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requires the explicit organization of many optimized subsystems.

The work in [3] presents an answer detection and ranking model trained on a

dataset of question answer pairs. This model uses many of the same manual feature

extraction techniques discussed above in order to train a model to select a group of

passages that may contain the answer to an input question.

3.2 Neural Networks and Text Data

It is evident that the understanding of short text data can be improved by

pre-processing the text to expose targeted features, but manually identifying some

targeted features can be a very challenging task. Several research efforts exist to

leverage deep neural networks in order to extract useful features from short texts in

an automated fashion.

Although not technically tested with short text datasets, the results in [22]

demonstrate that autoencoders equipped with constraints on their hidden states can

perform quite well in document classification tasks where some of the documents

can be considered relatively short. The data used in the study includes documents

with lengths varying from about 2% of the total vocabulary length to about 60% of

the total vocabulary length. Although text sequences that are 2% the length of their

vocabulary sizes may seem small, the average length of the short text sequences we

focus on in this work vary from 0.1% the length of their vocabulary down to 0.01%

the length of their vocabulary, which can introduce major issues with sparsity.

To avoid issues of sparsity without needing to prune many non-frequent words

from a vocabulary, most neural network models trained on text datasets accept

their data in the form of the word embedding in 2.1. Ideally, the word vectors that

make up the rows of this matrix are sourced from a library of pre-trained vectors

that capture semantic relationships between specific words. Many times though,

the word vectors are randomly initialized as part of the model parameters that need

to be updated during training. The latter approach may sacrifice a few points of

accuracy on some datasets, but allows for training on datasets in which there are

no pre-trained word vectors of good quality.

The work in [7] shows that a relatively shallow CNN model can achieve state-
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of-the-art performance on a number of short text NLU tasks including sentiment

analysis and question-type classification. The model convolves an input word em-

bedding with filters of varying height and constant width. This width is equal to the

width of the word embedding, producing a single row vector of feature-map outputs

for each filter. These outputs are fed to a non-linear activation function and max

pooling is performed over the entire activation vector of each filter. Since the max

pooling is not computed spatially, but rather over the time dimension of the con-

volved sequence, this pooling scheme is called max-over-time pooling [23] and allows

for easy handling of input sequences with varying lengths. Each of these pooling op-

erations produces one output per filter and these outputs are organized into a vector

which is fed to a fully connected output layer. By this design, each filter is trained to

respond to a specific and continuous sub-sequence of words, or n-gram, and produce

an output value conditioned on the presence of that sub-sequence feature.

A comparison between using RNN’s and CNN’s for several NLU tasks is per-

formed in [24]. In particular, the study uses the same CNN model from [7] and

demonstrates that the model performs comparatively to some popularly used RNN

models. The authors highlight strengths and weaknesses of both models, specifically

noting that the CNN performs as well if not better than RNN models in the tasks

that involve short text sequences. They conclude that this is due to the CNN being

particularly tuned towards responding to key words from a text sequence, whereas

the RNN models tend to create more generalized representations of the sequence as a

whole. In contrast, the RNN’s tested generally show a slight increase in performance

compared to the CNN when tasked with longer input text sequences.

A deeper, slightly more complicated CNN model for NLU understanding is

proposed in [6], which introduces multiple layers of wide convolutions and a newly

defined k-max pooling operation which is applied to the convolved feature-maps at

each layer. This model, called the dynamic CNN (DCNN), accepts a word embed-

ding matrix identical to the format in [7]. At each layer, including the input layer,

padding is added to the top and bottom of the input from the previous layer and

convolutions are computed with filters with unit width. Adding the padding along

the height dimension of the input represented to each layer allows for the filters to
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better consider information at the top and bottom boundaries of these representa-

tions. The resulting output from a convolution layer is no longer a 1D vector, as

in [7], but instead a matrix feature-map that has the same number of columns as

the pre-convolved representation, but with a few more rows—hence the name wide

convolution. The feature-map of each convolution layer is passed to a non-linear

activation function and k-max pooling is performed on these activations. The k-max

pooling operation is similar to max-over-time pooling, but instead selects the top k

values along the time dimension of the convolved sequence. This operation always

produces an output representation with k rows and as many columns as the repre-

sentation before pooling. The value of k is a function of the current layer within the

CNN and its value is diminished to a final minimum value as the final layer of the

network is reached. Before the pooling performed at each layer, the authors also

introduce an optional folding operation, in which every two columns of the activa-

tion matrix from that layer are summed. This operation can be used to introduce

interdependencies between spatial features in the convolved representations at each

layer, without adding any more parameters to the model. Like most CNN models,

the final output layer of the DCNN involves vectorizing feature-maps to feed to a

fully connected layer. The work in [6] demonstrates that the DCNN model described

above achieves state-of-the-art performance on question-type classification tasks and

sentiment prediction tasks on short text datasets.

The authors of [5] use the CNN model from [7] and an LSTM model to perform

semi-supervised clustering on several labeled short text datasets such as question-

types and topics for news article titles. For the LSTM model used in the study, the

output is taken as the average of its hidden states from every input word vector of the

input text sequence. The models are trained on a semi-supervised clustering task,

in which a K-means objective is minimized jointly with a classification objective

from a subset of labeled data. A comparative study demonstrates that the CNN

model slightly outperforms the LSTM for all datasets tested on the semi-supervised

clustering task.

In [8], the DCNN from [6] is trained on short text data and supervised with

pre-calculated, binary encodings of the input samples. The binary encodings are
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constructed by computing locality-preserving projections (outlined in [25]) of key-

word features, followed by thresholding the projections on their medians in order to

produce the binary values. The input data is then encoded by the last hidden layer

of the trained DCNN and K-means clustering is performed on these encodings. The

results from [8] show that the DCNN can learn useful encodings for short text with-

out the knowledge of labels, but the quality of the locality-preserving projections

are largely dependent on the quality of the keyword features being projected.

The techniques used in [5] and [8] both require a level of supervision that

drives the network towards learning a constrained distribution. This supervision

may be sufficient to achieve state-of-the-art results as long as the chosen method

of supervision is reflective of the semantic relationships we would like to capture

between the inputs. In [5], labels are chosen for the supervision, therefore it is clear

that the model will be constrained to learn relationships that are relevant to the

task. In [8], it may be sufficient to use distances between BOW vectors to capture

useful topic-relevant relationships because topics for short text sequences are highly

dependent on shared words between the sequences. For higher-level features such as

the intent of a question or question-type identification, a BOW distance supervision

metric will struggle to capture similarities on sentence pairs that do not share any

words.



4. METHODS COMPARED

We compare the performance of four neural neural network models for the short

text semi-supervised learning task outlined in [5]. This semi-supervised task is

chosen over the learning task in [8] because it is more suited for a wide range of

feature extraction learning, rather than depending on what can be supervised from

locality measurements within the high-dimensional input space. The four models

we compare are selected from the work outlined above and presented with three

short text datasets that are fully labeled. In this section we first describe in detail

the architecture of each of the four neural network models we test, including any

changes made to accommodate our task set-up.

4.1 Neural Bag of Words Network

The neural bag of words (NBOW) model that we use is a standard feed-forward

neural network that accepts a vectorized text sequence as input. The architecture

for this model is outlined in Figure 4.1 and contains one fully connected hidden layer

and one fully connected output layer. An input auxiliary layer is added in order to

construct a vectorized text sequence from a word embedding matrix. Traditionally,

BOW and TF-IDF vectors have been used as the sentence vector for this type of

model rather than vectorizing from a word embedding matrix. When vocabulary

sizes are very large though, this approach is not very feasible unless the dictionary

is heavily pruned to decrease its size. Even for relatively smaller vocabulary sizes,

as we will demonstrate using one of the datasets, BOW and TF-IDF vectors are still

too sparse to construct useful representations.

For the NBOW model in Figure 4.1, we vectorize the input word embedding

matrix of n word vectors in Rd by computing the average word vector over the rows

of the matrix. For the input word embedding in Rn�d, this produces one sentence

vector in Ri where i = d. This sentence vector is provided as the input to a fully

connected hidden, or latent layer to map the sentence vector to a representation

in Rh. This representation is fed to a final output layer which maps the latent

18
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Figure 4.1: Neural bag of words architecture.

representation to an output representation in Rk. The latent layer uses hyperbolic

tangent activation for its neurons and the output layer provides linear activation to

a classification objective that computes the softmax of the activations. Both fully

connected layers also include dropout [26], in which a neuron will remain active

during training with some set keep probability. Dropout has shown to reduce the

negative effects of over-fitting by forcing neurons not to depend too much on other

neurons during the training phase.

We include two fully connected layers at the output of the NBOW model

because we would like explicit control over the parameter h (the dimensionality of

latent vectors encoded by the model). This allows us to encode input text sequences

in varying spatial dimensions by extracting the latent vectors of the trained model

before they are passed to the output classification layer. For a dataset with K class

labels, the output layer used for the classification tasks is always in Rk.

Figure 4.2: Long short-term memory architecture.
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4.2 Long Short-Term Memory Network

The LSTM model that we use is set up similarly to the one used in [5], in

which the hidden states of the LSTM cell are averaged over time to construct a

vector representation of the input text sequence. The architecture for this model is

outlined in Figure 4.2. Instead of vectorizing the input word embedding as in the

NBOW model, each word vector in the embedding is provided to the LSTM one

time-step at a time, as if the LSTM were reading word-by-word from the embedded

input sentence. At each time-step, the LSTM cell outputs a hidden state vector in

Rh that is computed from current cell inputs and the hidden state from previous

time-steps. After feeding the n word vectors from the input embedding, the resulting

n hidden states are averaged to compute one vector inRh which is the encoded latent

vector of the input embedding. The latent representation is fed to a fully connected

output layer to construct an output representation in Rk. The hidden states of the

LSTM cells use hyperbolic tangent activation and the output layer of the LSTM

model provides linear activation to the same classification objective function used

in the NBOW model.

Since we are free to choose the amount of hidden neurons in the LSTM cells

of the model, we still have full control over the parameter h in order to control

the dimension of the encoded latent space. Also similar to the NBOW model, the

output layer dimensionality matches the number of classification labels, k for the

input datasets. Like the NBOW model, we are free to use the LSTM model as an

encoder by outputting the trained latent representations in Rh, or as a classifier by

using the actual model output representations in Rk.

4.3 Max-Over-Time Convolutional Neural Network

The max-over-time convolutional neural network, which we will call the Text

CNN (TCNN) from now on, is designed according to the model in [7] and the

architecture for this model is outlined in Figure 4.3. Instead of vectorizing the input

embedding or consuming the input embedding one word vector at a time, the TCNN

performs convolutions over the embedding with filters that have varying height and

the same width as the word embedding. We add the padding used in [6] to make
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Figure 4.3: Max-over-time convolutional architecture.

the convolutions wide convolutions along the rows of the embedding which allows

each filter to better consider word vectors at the top and bottom borders of the

embedding. For the model we test, we follow the choice of convolution filters in [5]

in which there are 500 filters of height 1, 500 filters of height 2 and 500 filters of

height 3. Convolution of the input embedding with each filter produces a vector

of outputs which are converted to activations with the rectified linear activation

function, relu(x) = max(x; 0). Max-over-time pooling is computed on each one

of these vector activations, therefore each filter contributes one output value after

the pooling operation, resulting in 1500 output values. These output values are

vectorized and fed to a fully connected layer with hyperbolic tangent activation

that produces a latent representation for the input embedding in Rh. This latent

representation is fed to a final fully connected layer with linear activation to produce

an output representation for the model in Rk. Once again, by choosing the number

of neurons in the latent fully connected layer, we are free to control the dimension of

the encoded latent space. This allows us to use the TCNN in a similar manner as the

NBOW and LSTM models—either as an encoder to represent input text sequences

in Rh or a classifier by using the actual model output representations in Rk.

4.4 Dynamic Convolutional Neural Network

The dynamic convolutional neural network (DCNN) is designed according to

the model in [6] and the architecture of this model is outlined in Figure 4.4. Like
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Figure 4.4: Dynamic convolutional architecture.

the TCNN model, the DCNN performs wide convolutions over the input embedding

to produce a number of feature-maps. For the model we test, we use one convolu-

tional layer and feed the vectorized output of the convolutional layer to two fully

connected layers to produce a latent representation and an output representation.

The architecture in Figure 4.4 shows only one convolutional layer consisting of the

feature-maps, folded matrices and pooled matrices. More than one convolutional

layer can be added by convolving another set of features with the pooled matrices

to produce a deeper set of secondary feature-maps, folded matrices and pooled ma-

trices. The filters used for convolution in the DCNN have unit width, therefore the

feature-maps produced by convolving a matrix with these filters have the same width

as the original matrix. Since wide convolutions are used, the resulting feature-maps

become taller than the matrix that is convolved. We follow the DCNN design in [6]

in which the model has only one convolutional layer with 5 filters of height 8 and the

value of k for k-max pooling is set to 5. The design uses hyperbolic tangent at all

layers and is shown to achieve state-of-the art performance on the Question-Type

dataset. The output of the final convolutional layer is vectorized and fed to the

first fully connected layer with hyperbolic tangent activation to produce a latent

representation in Rh. This latent representation is fed to a final fully connected

layer to produce an output with linear activation in Rk. We are able to use the

DCNN in a similar manner as the other 3 models, either by using it as an encoder

or as a classifier.



5. EXPERIMENTS PERFORMED

In this section, we present the supervised learning task and the semi-supervised

learning task we use to construct a fair test bed for the four neural network models

described in the previous section. Additionally, we describe the task of clustering the

text data using the low-dimensional latent representations learned from the semi-

supervised task and we outline the methods used for the evaluation of the clustering

results.

5.1 Supervised Learning Task

To compare the performance of the four models described above, we test them

on a fully supervised classification task with three short text datasets. The controlled

classification task involves training each model with a subset of hyperparameters

that are held constant throughout all tests in order to create a similar testing space

for all models. The constant parameters are the word vector dimension d, learning

rate �, latent vector dimension h and the dropout keep probability P (keep) during

training. The values of these parameters are listed in Table 5.1.

We require that each model learns the word embedding during training, as

there is a large difference in the quality of pre-trained word vectors available for

each of the datasets we use. We follow [5] and set the word vector size parameter

d = 300, since the authors of this paper notice a steep drop in performance when the

size of word vectors is too small. We observe that all the models learn stably when

� = 1 � 10�3 and learning only slows with smaller values of � without increases in

accuracy. For the latent vector dimension for all models, we match the best choice

Table 5.1: Constants for the classification task.

Hyperparameter Value

d 300
� 1� 10�3

h 100
P (keep) 0.5

23
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for the dimension used in [5] and set h = 100 for all classification experiments.

We train all models with dropout keep probability 0.5 and during inference, we do

not use any dropout (dropout keep probability 1.0). Each model is presented with

roughly 10 epochs of each dataset during training, as we find that beyond this,

accuracy does not increase or slight over-fitting may occur.

The outputs of each model we test are the linear activations of the k neurons

in the output layer. In order to construct an objective function for the classification

task, we convert the outputs to a probability distribution over class labels by adding

softmax activation to each of the output neurons. The softmax function �(a) for

activation value a is defined in Equation 5.1. This function computes the probabil-

ity of an element from neural network activation vector a being “on” through an

exponentially weighted calculation with respect to all other elements in the vector.

When applied to the linear activations of the k neurons in the output layer of each

model, the softmax function scales the outputs to “class label” probabilities that are

exponentially proportional to the linear output signal of each neuron. The resulting

k softmax activations sum to the value 1, where the activation of neuron j in the

output layer corresponds to the probability that the input sample belongs to class

j. Ideally, the trained outputs of the classification model would assign a probabil-

ity of 1 to the output neuron corresponding to the correct class with 0 probability

assigned to all other output neurons—this is referred to as a one-hot vector. The

labels used for supervision are encoded into one-hot vectors containing the value of

1 in the index corresponding to the value of the label. The values of the one-hot

labels clearly sum to 1, therefore they can be considered a probability distribution

of the same form as the model outputs.

�(ai) =
exp(ai)P
j exp(aj)

(5.1)

We compute the model loss li, of input sample i using the cross entropy func-

tion defined in Equation 5.2. In the equation, ŷij is the softmax activation of the

jth neuron in the output layer of the model for input sample i and yij is the value

of the jth index of the one-hot label for input sample i. The softmax cross entropy

function is well suited for representing the model performance for the classification
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task because it computes an error measure between two probability distributions.

When training with mini-batches, we feed multiple samples through the model and

evaluate the batch loss L, by computing the average over the values of li for each

sample i, in the mini-batch. Training the model is performed with gradient descent

by iteratively updating the parameters of the model, �, along the opposite direction

of the gradient @(L)=@(�).

li = �
kX
j

yijlog(ŷij) (5.2)

5.2 Semi-Supervised Learning Task

We test the four neural network models on the semi-supervised learning task

performed in [5] for the Question-Type dataset. The task in [5] is designed such

that a neural network model learns latent vector representations from a short text

dataset with a limited amount of labeled information. The model learns to group

latent representations by minimizing a K-means inspired objective function J , which

maintains and updates cluster label assignments and centroids in terms of model

weight parameters. This objective function is defined as,

J = �
NX
i

kX
j

rij�ij + (1� �)
LX
i

f�igi
+

X
l 6=gi

max (m+ �igi
� �il; 0)g (5.3)

where �ij = jjf(xi)� �jjj2.

In Equation 5.3, rij is the value of the jth one-hot index for the current clus-

ter assignment for sample i, gi is the ground truth class label for input sample i

mapped to the correct current cluster assignment by solving a minimum-cost match-

ing problem between cluster assignments and ground truth labels for the labeled

data, f(xi) 2 Rh is the latent representation output by the model for input sample

i and �j 2 Rh is the current centroid corresponding to cluster j.

The minimum-cost matching problem used to map ground truth labels to their

corresponding cluster labels is addressed in [27]. For each pairing of a cluster and

the set of all samples belonging to one ground truth label, we calculate a cost of that

pairing that is minimized when the pair shares a lot of common samples. The best

mapping of ground truth labels to cluster labels will therefore have minimum-cost.
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A cost measure that achieves this relationship is the size of the symmetric difference

between two sets, which is equal to the number of samples not common to both

sets. We should note that this approach is complimentary to the measure used in

the Cluster Validation chapter of [10] for solving this problem using a maximum

matching. More formally, the size of the symmetric difference between sets A and

B can be defined as,

WAB = jAj+ jBj � 2jA \Bj (5.4)

The cost for each pair of cluster assignments and set of samples with a common

label is calculated according to Equation 5.4 to produce a K �K matrix of weights

for a clustering problem with K classes and K cluster assignments. The ground

truth labels correspond to the columns of the matrix and the cluster assignments

correspond to the rows of the matrix. Matrix element Wij is the amount of points

not common to both cluster assignment i and ground truth label j. The mapping

from ground truth labels to cluster assignment labels can be determined by solving

the minimum-cost bipartite matching problem. This problem is solved using the

linear sum assignment() method in the Scipy Optimization and Root Finding

library [28]. The solution to this problem gives the mapped cluster assignment gi

for ground truth label i.

The authors in [5] designed the objective function defined by Equation 5.3 to

consist of two cleverly designed terms weighted by the parameter � 2 [0; 1]. The

first term computes a loss value according to the unsupervised K-means objective

by iteratively updating N one-hot cluster assignments and the k centroids �j 2 Rh

8j = 1:::k. The second term utilizes supervision from a subset of labeled data in

order to guide the clustering process performed when minimizing the first term. The

loss contributed by the second term is a function of the distance between the latent

representations of labeled input samples and their correct and incorrect current

assigned centroids. The loss term corresponding to the correct centroid of a labeled

sample i is the euclidean distance between the latent representation of the sample

and its correct centroid. The loss term corresponding to the remaining k�1 incorrect

centroids of a labeled sample i is computed from the sum of hinge losses with margin

m. The hinge loss with margin m for input sample i and incorrect centroid j
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Table 5.2: Constants for the semi-supervised learning task.

Hyperparameter Value

d 300
h 100

P (keep) 0.5

contributes loss if the latent representation of sample i is not closer to its correct

centroid by margin m than it is to incorrect centroid j. The two main terms of the

objective are weighted with parameter � in order to allow control over how much

the subset of labeled data contributes to the loss.

Like the supervised classification task, we keep a subset of the hyperparame-

ters constant during the test of the neural network models for the semi-supervised

learning task. The hyperparameters that are held constant can be seen in Table 5.2.

One exception is made for the DCNN model in which the word vector dimension d

must be decreased to 100 due to memory issues with very large multi-dimensional

arrays. For each test, we evaluate the quality of the learned latent representations

by performing cluster analysis on them. We describe the procedure for this analysis

in the next section.

5.3 Clustering and Analysis

We show the effectiveness of the semi-supervised learning task by clustering in

the latent representation space learned by each of the models on the Question-Type

dataset. In order to observe change in performance rather than raw performance,

we also perform clustering in the learned latent space of each model after it has

only been pre-trained on the subset of labeled data. We additionally compare both

of these results to clustering on the traditional BOW and TF-IDF text representa-

tions. We cluster using the K-means algorithm and we evaluate the clusters using

external validation measures by utilizing the entirety of the ground truth labels for

each dataset. The external validation measures we use include the widely used F-

Measure and Adjusted Mutual Information (AMI)—as used in [5]. We describe the

mechanisms of both validation measures below.

The F-measure is a widely used cluster validation metric that represents a
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measure of both the precision and recall of a cluster assignment. The precision

of cluster j is given by the ratio of the maximum number of samples in cluster j

belonging to the same ground truth label, to the total number of samples in cluster

j. Precision is also referred to as purity, in the sense that it gives a measure of

how pure a cluster is—if all samples in a cluster belong to the same ground truth

label, then this is a very good cluster and it can be said to be 100% pure, or have

a purity of 1 and precision of 1. The recall of cluster j, provided the ground truth

labels have been mapped to their corresponding cluster labels, is given by the ratio

of the number of samples in cluster j belonging to the truth label i mapped to that

cluster j, to the total number of samples for ground truth label i. The harmonic

mean between the precision of cluster i and recall of cluster i is used to calculate

the F-measure for cluster i and the total F-measure is taken as the average over the

F-measures of all clusters [10]. The F-measure for a clustering into K clusters is

defined as,

F =
1

K

KX
i

2piri

pi + ri

(5.5)

where pi is the precision of cluster i and ri is the recall of cluster i.

The F-measure is defined on [0; 1] and gives a maximum value of 1 when perfect

clustering is achieved.

Adjusted Mutual Information (AMI), also widely used as an external cluster

validation metric, is a measurement of the information shared between a set of

cluster assignments C and a set of ground truth label assignments T , adjusted for

the natural increase in mutual information between random sets as the sizes of the

sets increase [29]. We use the definition in [10] for the mutual information between

these sets, adjusted slightly for our case where the number of clusters r is the same

as the number of unique ground truth labels k, therefore r = k = K. The mutual

information between C and T is defined as,

I(C; T ) =
KX
i

KX
j

pij log
pij

pCi
pTj

(5.6)

where pij is the probability of selecting a sample from cluster assignment i and with

ground truth label j, pCi
is the probability of selecting a sample from cluster i and
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pTj
is the probability of selecting a sample with ground truth label j.

To construct a scoring in the range [0; 1], the mutual information is adjusted by

considering the entropy of the cluster and ground truth label assignments as well as a

measure of the expected mutual information if the clusters were assigned completely

at random [29]. The adjustment involves dividing the mutual information I(C; T )

by the maximum between the entropy of C and the entropy of T and subtracting

from the top and bottom terms of this ratio the expected value of the mutual

information, E[I(C; T )] for random cluster assignment. The equation from [29] for

the AMI between a clustering assignment and ground truth labels is defined as,

AMI(C; T ) =
I(C; T )� E[I(C; T )]

max(H(C); H(T ))� E[I(C; T )]
(5.7)

where H(C) and H(T ) is the entropy of C and T respectively.

Like the F-measure, AMI is defined on [0; 1] and it is clear to see that if

clusters are performed at random, the top term in Equation 5.7 will be very close to

0—indicating that we indeed have a poor cluster assignment. For a perfect cluster

assignment, AMI has a maximum value of 1.



6. EXPERIMENTAL COMPARISON

We program all of the experiments described in the above section using Python

version 2.7 and we use Google’s TensorFlow library for the development of the

neural network models [30]. Presented below are the results of the initial supervised

learning task for classification and the semi-supervised learning task to learn latent

representations of sentences. Finally, we report the results of cluster analysis on the

semi-supervised latent representations.

6.1 Datasets

The datasets we use for both the supervised classification task and the semi-

supervised learning task include the Question-Type dataset constructed in [1], the

AG-News dataset of news topics constructed in [9] and accessed from [31], and the

StackOverflow dataset of query topics constructed in [8], originally sourced from

Kaggle [32].

The Question-Type dataset from [1] consists of short queries coarsely labeled

by the type of answer the query is requesting and finely labeled by sub-categories

of the coarse labels. Our tests only consider the coarse labels, which include Ab-

breviation, Entity, Description, Human, Location and Number—resulting in K = 6

total categories. The AG-News dataset from [9] consists of short news titles and

their descriptions, labeled by their topics, which include World, Sports, Business

and Sci/Tech—resulting in K = 4 total categories. The StackOverflow dataset

from [8] consists of short queries from StackOverflow, labeled into K = 20 different

programming topic categories such as matlab, bash, etc. All three of the datasets

contain mutually exclusive classes in which no sample belongs to more than one

class.

Since our motivation is to require that the neural network models automati-

cally extract useful features from the datasets during learning, we perform minimal

preprocessing and we do not perform any manual text enrichment. The only pre-

processing we perform is to convert the sequence of words in each data sample into

30
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Table 6.1: Statistics for the datasets used in testing.

Dataset Question-Type StackOverflow AG-News

N 5,952 20,000 127,600
Ntrain 5,452 16,000 120,000
Ntest 500 4,000 7,600
nmax 39 36 20
navg 10 8 6
jV j 8,983 18,927 50,627

a sequence of numbers to be ingested by the neural network models. We use the

Gensim library for Python [33] in order to construct a vocabulary for each dataset

and we use the vocabulary indices to convert words into real-valued numbers. These

indices are used as the look-up key for the word embedding matrix in each neural

network model. Since the datasets are relatively small, we do not perform any

stop-word removal, word stemming or vocabulary pruning by removing infrequent

words. The statistics for each dataset can be seen in Table 6.1, which shows the

total number of samples N , number of samples in the training and testing splits

(Ntrain and Ntest), maximum and average sample length (nmax and navg), and the

size of the vocabulary jV j (number of unique words).

6.2 Supervised Classification Results

In this section, we describe the results of the supervised classification task

which is used as the initial comparison for the neural network models we are testing.

In each test, the hyperparamaters in Table 5.1 and the model designs outlined in

Chapter 4 are held constant while we are free to adjust other parameters such as

the amount of training iterations and the batch size in order to train on roughly 10

epochs over each dataset. We evaluate the performance of each model by computing

the accuracy that the trained model achieves on the testing splits of each dataset.

The accuracy is computed as the percentage of correctly classified samples out of

all samples in the testing split.

The average accuracy achieved over 5 training periods for each neural net-

work model and for each dataset is shown in Table 6.2, with bold text indicating

statistically better performance. We perform paired t-Test cross-validation with
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Table 6.2: Accuracy of the models on each of the short text datasets.

Model/Dataset Question-Type StackOverflow AG-News

NBOW 86.36 � 0.43 85.27 � 0.05 84.62 � 0.15
LSTM 87.48 � 0.52 76.20 � 0.50 84.26 � 0.14
TCNN 88.60 � 0.66 84.65 � 0.17 84.78 � 0.29
DCNN 86.04 � 0.50 85.38 � 0.26 85.59 � 0.41

a 99% confidence interval on the accuracy results by taking the model with the

highest average performance for each dataset and comparing it pair-wise against

the performance of the others. The t-Test, outlined in Chapter 22 of [10], deter-

mines if the difference in performance between the winning classifier and a losing

classifier in one dataset is statistically significant enough to consider the winning

classifier superior over the losing classifier within some confidence interval. For the

Question-Type dataset, the t-Test reveals with 99% confidence that the TCNN per-

forms better than the NBOW and DCNN models, but no statistical difference can

be determined between the performance of the TCNN over the LSTM model. For

the StackOverflow dataset, the t-Test reveals with 99% confidence that the DCNN

performs better than the LSTM and TCNN models, but no statistical difference

can be determined between the performance of the DCNN over the NBOW model.

For the AG-News dataset, the t-Test reveals with 99% confidence that the DCNN

model performs better than the NBOW and LSTM models, but no statistical dif-

ference can be determined between the performance of the DCNN over the TCNN.

It is important to note that the difference in model performances is not very large,

with the exception of the LSTM model performance on the StackOverflow dataset.

Comparisons between these results and results in the literature that use pre-trained

word vectors suggest that the CNN based models gain performance over the other

models by more efficiently utilizing word vectors. This would further support some

hypotheses that CNN architectures may be better suited for NLU tasks on short

text and we would like to look more closely into this behavior in future studies.

We attempt to learn more about the underlying behavior of each neural net-

work model by projecting its learned latent space in Rh to R2 using Principle Com-

ponent Analysis (PCA) and t-Distributed Stochastic Nearest Neighbor Embeddings




