/* * classifier.h * Classifier * * Daniel Wojcik * */ #ifndef classifier_h_ #define classifier_h_ #include #include "dlib/svm.h" //Class category //0 date (will compute average error) //1 subject #define category 0 //Relevancy parameters #define minKeep 1000 #define supportScale 300 #define minIDF 0.1 //Term scoring parameter #define scalar 500 //Characterization parameter #define topK 500 //Total number of classes (must be at least 1) #define classTypes 3 //Clustering algorithm to use. //0 is none, classifying based only on class comparisons //1 is K-Neighbors //2 is SVM //3 is Jaccard Coefficients #define clusMet 2 //Clustering algorithm parameters #define nearK 2 #define mergeClusters 1 #define maxD 250000 #define penalty 1000 //SVM parameters //default lambda is 0.0001 //default tolerance is 0.01 //default maxVect is 40 #define lambda 0.001 #define maxVect 40 #define tol 0.01 //Don't change the map type, but the kernel is //declared here to allow easy changing of the kernel typedef std::map sample_type; typedef dlib::sparse_sigmoid_kernel kernel_type; //Options: polynomial, radial_basis, sigmoid #endif