/* * classifier.h * classifier * * daniel wojcik * */ #ifndef classifier_h_ #define classifier_h_ #include #include "dlib/svm.h" //class category //0 date (will compute average error) //1 subject #define category 0 //relevancy parameters #define minkeep 1000 #define supportscale 300 #define minidf 0.1 //term scoring parameter #define scalar 500 //characterization parameter #define topk 500 //total number of classes (must be at least 1) #define classtypes 3 //clustering algorithm to use. //0 is none, classifying based only on class comparisons //1 is k-neighbors //2 is svm //3 is jaccard coefficients #define clusmet 2 //clustering algorithm parameters #define neark 2 #define mergeclusters 1 #define maxd 250000 #define penalty 1000 //svm parameters //default lambda is 0.0001 //default tolerance is 0.01 //default maxvect is 40 #define lambda 0.001 #define maxvect 40 #define tol 0.01 //don't change the map type, but the kernel is //declared here to allow easy changing of the kernel typedef std::map sample_type; typedef dlib::sparse_sigmoid_kernel kernel_type; //options: polynomial, radial_basis, sigmoid #endif