FLOW OPTIMIZATION IN COMPLEX NETWORKS

By

Rui Huang

An Abstract of a Thesis Submitted to the Graduate
Faculty of Rensselaer Polytechnic Institute
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

Major Subject: COMPUTER SCIENCE

The original of the complete thesis is on file in the Rensselaer Polytechnic Institute Library

Approved:

Boleslaw K. Szymanski, Thesis Adviser György Korniss, Thesis Adviser

> Rensselaer Polytechnic Institute Troy, New York

May 2010 (For Graduation May 2010) Transport and flow on complex network have attracted lots of attention because of their extensive applications to biological, transportation, communication and infrastructure networks. Recently, simple resistor networks were utilized to study transport efficiency in scale-free and small-world networks.

In this Master Thesis, we investigate and characterize the statistics of the extremes in correlated load landscapes in the complex networks. Four network models: scale-free network, Erdős-Rényi random graph, random geometric graph and smallworld network, are utilized here. Each of them could mimic certain properties of real-world networks. We consider a specific form of the weights, where the strength of a link is proportional to $(k_i k_j)^{\beta}$ with k_i and k_j being the degrees of the nodes connected by the link. We also add parameter ρ to control the probability for each node to become either the source or target. Exact numerical diagonalization based method and computational codes (for weighted network Laplacians) are employed to extract flow-based load. Mainly, we focus on two important observables, the maximal current flow and the average current flow in the network. Numerical results show that the optimal value of β for the maximum current flow is close to -1 for homogenous source/target rate. Further, this optimal value can change for different ρ depending on the network topology. Those results could help understand the network vulnerability problem and thus further the future work on cascading network failures.