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ABSTRACT 

Sequences of eye movements, or scan patterns, can be repeated across multiple views of 

the same visual stimulus. Research on skill acquisition has demonstrated that 

participants implicitly refine sequential behavior with experience (Gray & Boehm-

Davis, 2000; Haider & Frensch, 1999), and that the refinement process may lead to 

improvements when the structure of the task environment is supportive of 

improvements. The current research extends the understanding of scan patterns by 

demonstrating that they can be adapted to specific stimuli as experience with the stimuli 

increases. Functionally adaptive scanning theory is introduced as a theory of when and 

how scan patterns are adapted to repeating visual stimuli. FAST maintains that scan 

patterns repeat across the same stimulus during visual search and that scan patterns can 

be refined with increased use of the same scan pattern. FAST predicts that repeating scan 

patterns are refined to reduce time on task while maintaining accuracy. Three 

experiments were conducted to test FAST. The experiments demonstrate that although 

explicit strategies may be brought to a search task, they are implicitly refined.  
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1. Introduction & Historical Review 

An ancient proverb attributed to Cicero (106-43 BCE) suggests that the eyes are the 

windows to the soul (Titelman, 1996). A more modern, less spiritual, assessment is that 

the eyes are the windows to the mind. Proponents of the eye-mind hypothesis assert that 

eye movements are intimately linked to cognition, such as memory, goals, and skills 

(Just & Carpenter, 1976). Consequently, understanding eye movement processes help to 

understand cognition. 

Vision results from observer-environment interactions (Findlay & Gilchrist, 2003; 

O'Regan & Noe, 2001). On the observer side, eye movements are an integral part of the 

visual system. It is insufficient to restrict eye movements when studying vision. On the 

environment side, features of, and associations between, stimulus items within a visual 

environment also affect eye movement processes (Myers & Gray, submitted; Shen, 

Reingold, & Pomplun, 2000). Therefore, it is also insufficient to exclude how the 

environment affects eye movement processes. 

The following work introduces a novel theory of visual scanning called functionally 

adaptive scanning theory (FAST). FAST is a theory of implicit changes to visual scans 

resulting from observer-environment interactions, which reflect implicitly acquired task-

relevant scanning skills. FAST combines the functionality of visual scans (Laeng & 

Teodorescu, 2002; Noton & Stark, 1971a) with scanning theories and basic research on 

statistical influences on eye movements.  

In this section, influences on eye movements and research on visual scans is 

presented, followed by details of FAST and its hypotheses. Finally, an introduction to 

the contextual cueing phenomena and its relation to FAST is provided.  

1.1 Saccades and Scanning Patterns 

Visual examinations can be broken into sequentially occurring instances where the eye is 

relatively stable (fixations/dwells) and when it moves at high velocities (saccades). 

Saccades carried out in succession result in scan patterns.  

Studying saccades and scan patterns requires an active approach, as opposed to a 

passive approach, to vision research (Findlay & Gilchrist, 2003; O'Regan & Noe, 2001). 

The active vision approach advocates understanding vision through understanding 
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saccades while the passive approach discounts saccades from explanations and theories 

of visual phenomena (Findlay & Gilchrist, 2003).  

The passive approach is a category of experimental paradigms in which saccades 

are prevented during stimulus exposure (because of a brief exposure period) or in which 

saccades are allowed but not measured or considered as part of the explanation of visual 

phenomena. Because the passive approach has dominated much of the research in visual 

cognition, not much is known about visual scanning or its contribution to visual and 

perceptual phenomena.  

The following sections first highlight influences on single saccades, then cover 

different types of scanning patterns. Next, scanpath theory, research on scanning 

patterns, and limitations of the research are presented.  

1.1.1 Influences on Saccades  

There are three reported influences that affect saccades: 1) exogenous influences 

(Everling & Fischer, 1998; Findlay, 1982, 1997; Franconeri & Simons, 2003; 

Franconeri, Simons, & Junge, 2004; Itti, Koch, & Niebur, 1998; Kowler, 1990; Mitchell, 

Macrae, & Gilchrist, 2002; Treisman & Gelade, 1980; Wolfe, 1994), 2) endogenous 

influences (Boot, McCarley, Kramer, & Peterson, 2004; Chernyak & Stark, 2001; 

Hayhoe & Ballard, 2005; Hayhoe, Shrivastava, Mruczek, & Pelz, 2003; Horowitz & 

Wolfe, 2001, 2003; Land & Lee, 1994; Land & McLeod, 2000; Peterson, Kramer, 

Wang, Irwin, & McCarley, 2001; Rayner, 1998; Yarbus, 1967), and 3) statistical 

influences (Chun, 2000; Chun & Jiang, 1998; Chun & Nakayama, 2000; Myers, 2004; 

Myers & Gray, submitted; Reder, Weber, Shang, & Vanyukov, 2003; Rosenholtz, 1999, 

2001).  

Exogenous influences (i.e., bottom-up, data-driven) refer to hypothesized 

interactions between environmental stimuli sufficiently distinct from surrounding areas 

(i.e., salient) and hardwired visual processes. For example, when a visual stimulus 

abruptly appears on a display it activates processes associated with attention, and 

triggers the process of shifting attention to the onset location. Although exogenous 

processes clearly require some level of cognitive processing (albeit at a relatively low 

level) they are typically thought of as reflexes facilitated by salient stimulus features. 
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Salient stimuli have been shown to attract attention and restrict the order of information 

visited (Franconeri, Simons, & Junge, 2004; Pomplun, Reingold, & Shen, 2003; 

Theeuwes, 2004; Wolfe, 1994). Consequently, exogenous influences are considered non-

deliberate (Everling & Fischer, 1998; Findlay, 1982, 1997; Kowler, 1990; Mitchell et al., 

2002), and can result in anarchic successions of individually programmed saccades 

(Wolfe, Alvarez, & Horowitz, 2000). 

Endogenous influences (i.e., top-down, goal-driven) refer to deliberate influences on 

saccades, such as task goals like making a sandwich or batting a ball. Task goals affect 

the distribution of dwell locations and durations (Hayhoe, 2000; Hayhoe & Ballard, 

2005; Hayhoe, Shrivastava, Mruczek, & Pelz, 2003; Land, Furneaux, & Gilchrist, 2002; 

Land & Lee, 1994; Land & McLeod, 2000; Land & Tatler, 2001). 

Endogenous and exogenous influences do not represent a dichotomy, but rather 

opposite poles on a continuum. Located along the eye movement continuum are 

saccades that serve a goal, resemble a deliberate strategy yet are non-deliberate, and are 

acquired through statistical regularities within the environment. For example, when 

repeatedly searching through a visual environment (such as visual search), regularity 

within the visual environment (such as repeating distractor or target locations) can be 

used to improve task efficiency when the environmental regularities are associated with 

the goal. This type of saccade results from statistical influences. Visual attention 

mechanisms (Reder, Weber, Shang, & Vanyukov, 2003) and saccades (Myers & Gray, 

submitted) can be statistically influenced through experience with statistical patterns of 

task-relevant information (see Figure 1).  

It could be argued that what has come to be known as exogenous influences result 

from an interaction between inexperience with a task and salience within the task 

environment. For example, Rosenholtz (1999; , 2001) argues that statistical differences 

between stimulus features within a certain spatial proximity is visual salience–salient 

areas are statistical outliers across different stimulus features within an area. These 

statistical outliers capture attention when they are not mediated in some way, such as 

experience with the environment. Likewise, it could also be argued that endogenous 

processes are statistically influenced saccades that have changed from an implicit 

process to an explicit, goal-directed strategy through their experienced benefit (Siegler & 
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Stern, 1998; Sun, Merrill, & Peterson, 2001). Consequently, the eye movement 

continuum more generally reflects the degree to which statistical properties of the task 

environment influence saccades (see Figure 1).  

To briefly summarize, there are three saccadic influences typically reported–

endogenous, exogenous, and statistical. These labels add to confusion because both 

endogenous and exogenous influences reflect statistical influences. Because visual 

scanning patterns are temporally consecutive saccades, they too are influenced by the 

statistical structure of the task environment. The following section covers differences 

between different categories of visual scans. Next, scanpath theory is presented as a 

theory of repeating scan patterns. Further research on scanning patterns is then provided. 

The section ends with limitations of research on scanning patterns. 

1.1.2 Different Types of Visual Scans 

There is ambiguity in the terms used to describe visual scans. Many researchers create 

the ambiguity by using terms like “scanpath,” “visual scan,” “scan path,” and “scan 

pattern” interchangeably to describe successions of saccades. To reduce ambiguity, the 

term visual scan will be used as a general term and does not connote any particular 

underlying process or repeatability–it simply defines a succession of saccades. The term 

repeating scan patterns will be used to label highly similar visual scans, and does not 

imply that a single influence (endogenous or exogenous) leads to the high degree of 

similarity between the scans. The term scanpath is reserved for repeating scan patterns 

hypothesized to result from only endogenous influences (Chernyak & Stark, 2001; 

Grosbras et al., 2001; Josephson & Holmes, 2002; Noton & Stark, 1971a, 1971b; Pieters, 

Rosbergen, & Wedel, 1999; Stark & Ellis, 1981; Stark et al., 1980; Zangemeister, 

Sherman, & Stark, 1995) (see Figure 1).   
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Figure 1. Continuum representing the relationship between stimulus-driven repeating scan patterns, 

adapting scan patterns and memory-driven repeating scan patterns (i.e., scanpaths). 

Differentiating between stimulus-driven repeating scan patterns, adapting scan 

patterns, and scanpaths is important for hypothesizing the underlying influences on 

visual scans. If either memory-driven or stimulus-driven repeating scan patterns are 

present in the behavioral data, then they can be linked to either purely endogenous or 

purely exogenous processes, respectively. Determining when a visual scan is a stimulus-

driven repeating scan pattern or a scanpath can be difficult, and will be covered in a 

following section. Moreover, if adapting scan patterns are present in the behavioral data, 

then they can be related to a mixture of exogenous and endogenous processes. Because 

the scan patterns are adapting with experience, their adaptation is hypothesized to be 

governed by processes associated with skill acquisition, such as proceduralization and 

automaticity (Blessing & Anderson, 1996; Haider & Frensch, 1999). The following 

sections will cover research on scanpath theory and scan patterns. 

1.1.3 Scanpath Theory 

Noton and Stark (1971a; , 1971b) reported that visual scans produced while freely 

viewing a scene are stored in memory and are specific to individuals and the scene 

presented. The scans can then be repeated across the same stimulus by recalling the 

scanning information from memory, and the term scanpaths was coined for these types 

of visual scans. Noton and Stark interpreted scanpaths as revealing something about how 

humans perceive and process visual patterns in the environment. Over a twenty-year 

period, the authors developed a theory of scanpath construction and execution. Two 

hypotheses central to the scanpath theory are (1) that perception involves saccades, and 

(2) that the encoding, storage, and retrieval from memory of saccades across the stimulus 

are integral to recognizing previously viewed stimuli. The basic assumption is that visual 
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perception is a pattern-learning process where an internal representation of a viewed 

stimulus is stored as a pattern in memory and that recognizing a stimulus is the process 

of retrieving the stored pattern from memory. According to scanpath theory, scanpaths 

are the patterns stored in memory.  

Noton and Stark (1971a; , 1971b) distinguish between a learning phase and a 

recognition phase for image recognition. During the learning phase, a visual scan occurs 

while freely viewing a stimulus, and is stored in memory. During the recognition phase, 

the same scan pattern is retrieved from memory and instantiated when the same stimulus 

is subsequently presented. The authors interpret the repeated scan pattern during the 

subsequent stimulus presentation as an instance of recognizing the stimulus; however, 

the authors did not hypothesize how scan patterns were stored in, or retrieved from, 

memory. Based on Noton and Stark’s theory, their repeating scan patterns can be 

classified as scanpaths. Indeed, it was Noton and Stark who coined the term scanpath to 

describe repeating scan patterns as occurring from sequences of saccades stored in 

memory. However, there is a chicken-and-egg problem with Noton and Stark’s 

explanation of repeating scan patterns: it is unclear if recalling the stimulus resulted in 

the repeated scan pattern, or if repeating scan patterns lead to recalling the stimulus.  

Noton and Stark liken memorizing and recalling scanpaths to memorizing and 

recalling “a conventional sequence of behavior” (1971b, pp. 936-937), such as executing 

a solution to a Tower of Hanoi puzzle that is retrieved from memory (Simon, 1999). The 

authors also report that scanpaths are similar within participants and different between 

participants. 

1.1.4 Research on Scanning Patterns 

Since Noton and Stark’s initial reports (1971a; , 1971b), evidence has continued to be 

reported on the nature of scanpaths and repeating scan patterns. Stark and Ellis (1981) 

studied eye movements of participants repeatedly viewing perceptually dynamic images 

such as ambiguous figure illusions (see Figure 2). 
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Figure 2. Ambiguous figure illusion. The image can be perceived as a young woman turning her 

head, or as an older woman in a shawl. 

Stark and Ellis (1981, p. 214) found evidence that scans change considerably with 

different cognitive states (different perceptions of the ambiguous stimulus) and interpret 

this as indicative of “cognitive models,” or stored saccade programs hypothesized to 

occur in scanpaths. Again there is a “chicken-and-egg” problem here: it is difficult to 

determine from their report if the shifts in perception changed the scanning pattern, or if 

changes in the scanning pattern changed the perception of the ambiguous image. 

Further evidence that repeating scan patterns are stored as cognitive models, 

predicted by scanpath theory, is provided by Brandt, Stark, Hacisalihzade, Allen, and 

Tharp (1989). The authors questioned whether internalized visual images (i.e., imagined 

scenes) are scanned in the same way as during a physical presentation of the same scene. 

The authors used two irregularly checkered matrices as their stimuli; half of the 

participants saw one stimulus and the other half saw the second stimulus. Brandt et al. 

conclude that scanning patterns from a viewed stimulus “reflect” scanning patterns of an 

imagined stimulus.  

Laeng and Teodorescu (2002) replicated the findings of Brandt et al. (1989), and 

concluded that repeating scan patterns play a functional role rather than an 

epiphenomenal role during visual imagery, further supporting scanpath theory. In two 

experiments, participants viewed an irregular checkerboard or color pictures of fish and 

were subsequently asked to form mental images of these stimuli while keeping their eyes 

open.  

During a “perceptual phase,” a group of participants was requested to maintain 

fixation at the screen’s center, whereas another group was free to inspect the stimuli. 
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During an “imagery phase”, all of the participants were free to move their eyes. In 

Experiment 2, a third group of participants was free to explore the pattern during the 

perceptual phase but was required to maintain central fixation during the imagery phase.  

For participants free to explore the pattern, the percentage of time spent fixating a 

specific location during perception was significantly correlated with the time spent on 

the same locations during imagery. The scanning order during the imagery phase was 

correlated to the order during the perceptual phase. Importantly, the strength of 

relatedness between scan patterns predicted performance accuracy. Participants who 

fixed their gaze centrally during the perceptual phase did the same spontaneously during 

the imagery phase, even though they were free to move their eyes. Participants free to 

explore during the perceptual phase, but maintaining central fixation during the imagery 

phase, showed decreased ability to recall the pattern. Laeng and Teodorescu (2002) 

conclude that efferent commands to the eye and proprioceptive information while 

initially scanning a stimulus are stored with the encoding of each eye dwell during 

perception, and are later used during the regeneration of the imagined stimulus as an 

index to the location of a part of the image. 

Pieters, Rosbergen, and Wedel (1999) examined if Noton and Stark’s scanpath 

theory could inform marketers on the wear-out speed of printed advertisements over 

repeated exposure. The authors found that repeating scan patterns obey a stationary, 

reversible, first-order Markov chain and remain constant across repeated exposure to 

printed advertisements. Pieters et al. (1999) also reported that attention duration 

decreases significantly across repeated exposures to the printed advertisements. 

Finally, Josephson and Holmes (2002) tested the robustness of scanpath theory in 

the domain of the World Wide Web.  The authors compared scan patterns collected from 

participants while viewing web pages, and concluded that their results generally support 

scanpath theory. However, the authors found that some visual scans were similar 

between participants, contrary to scanpath theory. 

Using functional magnetic resonance imaging, Grosbras, Leonards, Lobel, Poline, 

LeBihan, and Berthoz (2001) studied the dependence of repeating scan patterns on 

different types of memory by analyzing cortical activity during performance of novel 

and well learned scan patterns. The results indicate that novel scan patterns require 
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specific cortical resources related to effortful sequence preparation and coordination as 

well as resources associated with spatial working memory. For learned scan patterns, 

similar cortical areas received reduced activation. Furthermore, areas associated with 

memory were recruited (e.g., parahipocampal area) during the execution of learned scan 

patterns. The authors conclude that neural resources recruited by the visual system can 

change with the familiarity of the scan pattern. This study provides evidence that well 

learned scanning patterns are cortically distinct from novel patterns.  

Gilchrist and Harvey (in press) present evidence that scanning behavior in visual 

search includes a systematic component. Participants’ task was to search for a target that 

was either present or absent within grid-like displays. Participants searched through 

many trials, and all spatial configurations for each trial were distinct. Participants 

generated more horizontal saccades than vertical saccades while searching for the target.  

Disruption of the grid structure in the display moderated but did not eliminate the 

systematic component. The authors note that this is consistent with scanpath theory. 

Although the authors found evidence of systematic components during visual search, 

they did not present evidence that scan patterns repeated across searches. Rather, the 

authors demonstrate that participants preferred horizontal saccades to vertical saccades. 

Although this arguably results from endogenous influences, it does not demonstrate that 

scan patterns are repeatedly used during their visual search task.  

Gilchrist and Harvey’s results demonstrate an important point regarding repeated 

scan patterns–the task environment must be structured such that repeating the same scan 

pattern is: 1) possible, and 2) potentially useful, otherwise there is no reason to store and 

repeat scan patterns as suggest in scanpath theory. The visual task environment must be 

relatively stable across multiple views to acquire and repeat scan patterns during visual 

search tasks.  

In summary, there is empirical evidence that repeating scan patterns are scanpaths, 

and thus cognitively imposed as originally hypothesized in Noton and Stark’s scanpath 

theory (1971a; , 1971b). Though contrary to Noton’s and Stark’s original proposition, 

there is evidence that scan patterns are similar across individuals (Josephson & Holmes, 

2002). Similarity across individuals could result from the completing the same goal in 

the same stimulus or from pure exogenous influences. Noton and Stark also theorized 
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that scan patterns are acquired during the initial view of a stimulus, stored as “cognitive 

models,” and repeated during subsequent views of the same stimulus. The same “model” 

is retrieved whether the review is imaginary or physically present. To acquire, store, 

retrieve, and use a scan pattern on a stimulus, components of the stimulus must be 

unchanged across multiple views. The paradigm used in all reported research uses 

unchanging stimuli across repeated views; consequently, repeating scan patterns have 

been regularly found. Furthermore, there is empirical evidence that separate cortical 

areas are active when learned scan patterns are executed when compared to novel 

patterns. Finally, repeating scan patterns are hypothesized to present a more 

computationally economic approach to scheduling eye movement sequences when 

compared to novel sequences. 

1.1.5 Potential Limitations of Scanning Research 

Although there is much empirical evidence for repeating scan patterns and scanpath 

theory, there are three potential limitations to all of the reviewed research. First, a slight 

majority of the reviewed research came from a single laboratory. Second, all of the 

reviewed research used a free-view paradigm (excluding Grosbras et al., 2001). Third, 

there is difficulty in detecting statistically significant differences between stable visual 

scans. 

Replication is a crucial component of any empirical result. The ability to replicate a 

result bolsters confidence that the result is understood and reproducible. Ideally, 

replication should occur both within, and outside of, the lab where the result originated.  

Of the nine reported scanning results reviewed in previous sections (excluding Gilchrist 

& Harvey, in press), a slight majority (5) of the reported scanning research came out of 

Dr. Lawrence Stark’s laboratory. Even so, repeating scan patterns have been 

successfully replicated in other labs (Grosbras et al., 2001; Josephson & Holmes, 2002; 

Laeng & Teodorescu, 2002; Pieters, Rosbergen, & Wedel, 1999). For behaviors thought 

to be as dissimilar and chaotic as scan patterns (Wolfe, Alvarez, & Horowitz, 2000), this 

replication record is very strong. Unfortunately, it is difficult to determine the number of 

failed attempts at replication, as most journals do not publish null empirical results. It 

can be construed that not enough replication has been done outside of Stark’s laboratory 
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to adequately evaluate the reproducibility of repeating scan patterns, but this is more an 

argument to continue research then one diminishing scanpath theory and the 

phenomenon.  

The second limitation is that scanning research conducted inside and outside Stark’s 

laboratory has only used a free-view paradigm (excluding Grosbras et al., 2001). The 

free-view paradigm consists of displaying an image to participants and simply 

instructing them to ‘remember the image.’ This is an important limitation on scanpath 

theory because it is difficult to generalize to different environments when only studying 

a phenomenon within a single paradigm.  

Earlier, the point was made that regularity within the visual environment is 

important when studying and understanding scan patterns. Indeed, the free-view 

paradigm provides such regularity by having participants repeatedly view the same 

image. However, repeating scan patterns may also occur in tasks other than free-view, 

such as visual search tasks where the visuospatial arrangement of searched through items 

is identical across multiple views, providing regularity. Regularity within visual search 

tasks highlights a potential research paradigm to study visual scans.  Traditional visual 

search tasks rarely repeat the same visuospatial arrangement of items to be searched 

through, reducing the ability for participants to adapt to regularity within the task 

environment. However, when repeated spatial layouts of items are searched through and 

paired with a constant target location, participants exploit this pairing and reduce the 

times of their searches (Chun, 2000; Chun & Jiang, 1998).  

The use of a goal-directed task, such as visual search with regularity, reduces the 

difficulty associated with statistical analyses on visual scans when compared to the free-

view paradigm. The free-view paradigm makes it relatively difficult to (a) easily 

determine the beginning and ending of a visual scan, (b) determine which scans should 

be compared, (c) hypothesize differences between scans, and (d) hypothesize why scans 

may change over time. With goal-direct tasks, (a) the beginning and ending of a visual 

scan could be the beginning and ending of a visual search trial, (b) scans from within- 

and between-participant search conditions should be compared appropriately (not all 

scans compared against all other scans), (c) scans may be hypothesized to change 

differentially based on within- and between-participant manipulations on stimuli, and (d) 
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changes in scans can be hypothesized if and when regularity is systematically introduced 

into the task environment.  

Finally, the third limitation of scanning research is the ability to compare scan 

patterns. As the research moved outside of Stark’s laboratory, new comparison methods 

were developed. For instance, Laeng and Teodorescu (2002) used statistical regression 

analyses to determine if the initial view of a stimulus predicted the scanning order when 

imagining the same stimulus. The authors regressed the serial order of the first 9 items 

fixated during the initial view of a stimulus on the first 9 items fixated while imagining 

the initially viewed stimulus, and were able to obtain statistically significant positive 

linear relationships. 

Pieters et al. (1999) used probability estimates of scanning behavior derived through 

Markov processes. Abbot and Hrycak (1990) touched on several limitations to Markov 

process models. The authors argued that testing of the Markov process model, in terms 

of resemblance between modeled scan patterns and those produced by participants, (1) 

requires a technique for assessing similarity between the patterns, (2) categorizing 

patterns, and (3) identifying typical patterns. Abbott and Hrycack argued that 

Levenshtein distances provide all three, and provide an opportunity to employ clustering 

analytics to determine families of similar behavioral sequences. The Levenshtein 

distance, or minimum-edit distance, between two strings (or visual scan patterns) is 

given by the minimum number of operations needed to transform one pattern into the 

other, where an operation is an insertion, deletion, or substitution of a single dwell 

(Levenshtein, 1966). 

Josephson & Holmes (2002) computed Levenshtein distances to objectively 

determine the similarity between multiple scan patterns. However, Josephson and 

Holmes (2002, p. 547) characterize this approach as “…descriptive and interpretive in 

nature.” resulting from the their lack of statistical significance tests applied to the 

Levenshtein distances.  

Each of the three approaches provide objective comparisons between visual scans 

and demonstrate a shift toward increased measurement rigor from when visual scan 

similarities were determined by ‘eyeballing’ data (Yarbus, 1967). Josephson and Holmes 

(2002) suggest an approach for determining statistical differences between visual scans. 
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Furthermore, of the three methods, Levenshtein distances afford techniques that the 

others do not, such as the ability to quantify the similarity between two scan patterns. 

1.1.6 Summary 

Visual scans may repeat across multiple views of the same stimulus, resulting from 

purely endogenous influences (scanpaths) or from purely exogenous influences 

(stimulus-driven repeating scan patterns). Furthermore, visual scans can adapt to the 

statistical structure of the task environment (adapting scan patterns) and can become 

proceduralized and automated prior to adaptation (see Figure 1). 

There is clear evidence that repeating scan patterns have been observed across many 

empirical studies using a free-view paradigm. Stark and colleagues (Noton & Stark, 

1971a, 1971b; Stark & Ellis, 1981; Stark et al., 1980) hypothesize that repeating scan 

patterns are scanpaths, and are thus stored as “cognitive models” in long-term memory 

after an initial view of a stimulus. The “models” are recalled when subsequently viewing 

the same stimulus. Repeating scan patterns have been compared using a number of 

methods from eye-balling the data (Yarbus, 1967) to the use of Levenshstein distances 

(Josephson & Holmes, 2002).  

There are three limitations of the reviewed scanning research. First, visual scans 

have only been acquired and compared from free-view paradigms. Other paradigms 

(e.g., visual search and contextual cueing) must be used to adequately determine the 

prevalence of repeating scan patterns. The second limitation results from the first: only 

descriptive statistics have been used to determine trends in scan patterns (i.e., clustering 

analytics). The second limitation can be overcome by using a paradigm that has a clear 

and explicit goal (e.g., finding a target among distracters) where hypotheses become 

clearer than in a free-view paradigm and allow for the use of inferential statistics (i.e., 

analysis of variance). The third limitation of the reviewed research is minor–a majority 

of the reported results have come from a single laboratory. This limitation is not fatal, 

and suggests that further work outside of the originating laboratory is needed. 

If repeating scan patterns are indeed scanpaths as asserted by Noton and Stark, then 

scanpaths should be affected by processes associated with skill acquisition, such as 

proceduralization and automaticity. Moreover, scanpaths should change with increased 
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use to reduce the amount of viewed information necessary for completing the goal across 

repeated scans of the same stimulus. The following section introduces functionally 

adaptive scanning theory, as a theory of repeating and changing scan patterns. 

1.2 Functionally Adaptive Scanning Theory (FAST) 

There is evidence that similar scan patterns occur on repeated visual stimuli and contain 

several attributes. For example, similar scan patterns are 1) mostly idiosyncratic (Noton 

& Stark, 1971a, 1971b; Pieters, Rosbergen, & Wedel, 1999; Stark & Ellis, 1981; Stark et 

al., 1980; Zangemeister, Sherman, & Stark, 1995) but 2) can be similar between 

participants (Josephson & Holmes, 2002), 3) are important to visual imagery (Brandt, 

Stark, Hacisalihzade, Allen, & Tharp, 1989; Laeng & Teodorescu, 2002), and 4) have 

been correlated to neural structures that differ to the neural structures involved in novel 

scan patterns (Grosbras et al., 2001). Functionally adaptive scanning is a theory (FAST) 

that incorporates the research community’s understanding of statistical influences on 

saccades and scan patterns to understand changes in repeating scan patterns. The current 

section provides an overview of FAST and its hypotheses.  

1.2.1 FAST Overview 

“The demands that the functional task environment makes on human 
cognitive, perceptual, and action operations causes these operations to 
adapt to each other and to the functional task environment…Sometimes 
these adaptations result in a readjustment that is limited to cognition, 
perception, and action; other times these adaptations result in changes in 
the pattern of use of mental versus environmental resources; and 
sometimes an operator’s actions adapt the environment itself which then 
may lead to additional adaptations and changes.”  Gray, Neth, and 
Schoelles (in press). 

This statement of human-environment interactions and adaptations succinctly captures 

the theoretical position and approach behind FAST. Functionally adaptive scanning is a 

theory of human visual scanning that integrates the phenomena of repeating scan 

patterns with influences from statistical regularities within a task environment. Scanning 

patterns, and eye data in general, reflect adaptations to statistical regularities of features 

in a task environment. The more constant the features, the greater the behavioral 

adaptation expected, up to some unknown limit. The central tenets of FAST follow from 
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this and are (1) visual scans are functional, contributing to goal completion in ways other 

than simply orienting the eyes to acquire information, such as aiding in the recall of 

stored information from a previously scanned scene (Laeng and Teodorescu, 2002); and 

(2) visual scans are potentially adaptive, such that repeating scan patterns can be refined 

over time, increasing task efficiency while simultaneously reducing scanning times. 

Consequently, changes in scan patterns can be interpreted as refinement. When the 

refined scan patterns result in decreased times to recognize a stimulus or to respond to 

questions regarding a stimulus while maintaining response accuracy, then refinement can 

be considered beneficial. Beneficial behavioral refinement is a typical determinant of 

skill acquisition, and will be referred to as the behavior-refinement hypothesis, which is 

an extension of Haider & Frensch’s information-reduction hypothesis (1999). 

FAST is rooted in the active vision research approach, and incorporates the 

behavior-refinement hypothesis with repeating scan patterns. FAST makes 3 

propositions: 1) that repeating scan patterns form in stable visual environments, 2) goal 

information (e.g., the location of a target during a visual search task) can become 

associated with repeating scan patterns, and 3) repeating scan patterns paired with goal 

information can be refined to a smaller and smaller number of behaviors (e.g., saccades), 

functionally adapting repeating scan patterns to a goal associated with a task 

environment, effectively reducing time-on-task while sustaining accuracy. There are 

three criteria that must be present to conclude that repeating scan patterns were refined. 

The three criteria are:   

Criterion-1. participants should reduce the number of eye fixations necessary 

to find the target across search trials;  

Criterion-2. visual scans should become increasingly similar across repeated 

searches through the same stimulus independent of the number of saccades 

composing the visual scans;  

Criterion-3. scan patterns from identical and repeating stimuli will become 

more similar at a faster rate than scan patterns from novel stimuli.  

All three criteria must be met to conclude that visual scans are refined across repeated 

searches through the same stimulus. 
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The three criteria should be manifested in two types of observable eye movement 

behavior. First, eye fixations can be analyzed for changes as a function of task 

experience, and is the focus of criterion 1. Second, scan pattern similarities can change 

as a function of task environment regularity and experience, and is the focus of criteria 2 

and 3. 

For example, over the course of repeatedly searching through the same visual 

stimulus display and finding the associated target, scan patterns would first repeat, then 

become paired with goal information, and then refined. It is important to note that these 

are not discrete stages, one occurring before the other, and in fact the number of dwells 

to find a target can be reduced while visual scans become increasingly similar. FAST 

also assumes that refinement is an implicit process, and is based on the finding that 

search displays are implicitly learned across repeated searches through the same search 

display (Chun, 2000; Chun & Jiang, 1998; Chun & Nakayama, 2000).   

1.2.2 Three Possible Influences on Predicted Refinement in FAST 

Exogenous and endogenous influences can be considered as two extremes of statistical 

influences on goal-oriented behavior. Between these extremes are non-deliberate 

behaviors that serve a goal and appear strategic. The two extremes and the area between 

them are useful for predictions of scanning refinement (see Figure 1). 

Scans that result from purely endogenous influences would not be refined because 

the same endogenous scan pattern would be repeatedly used. For example, after 

completing a goal by scanning a stimulus for the first time, all subsequent scan patterns 

in service of the same goal on the same stimulus would be nearly identical to the first 

scan pattern. Although this seems very unlikely and a “straw man” influence, this is 

precisely what is predicted by scanpath theory (Noton & Stark, 1971a, 1971b). Indeed, it 

is certainly the case that competing endogenous strategies could alternate. For example, 

a counterclockwise versus clockwise search pattern could be instantiated, and both 

would be in service of the same goal. However, alternating between two, or more, 

endogenous strategies would result in a few repeating scan patterns, but not to scan 

pattern refinement.  



 

 17 

Behavior from purely exogenous influences would not be refined, either. The same 

stimulus would always influence scan patterns in the same manner, leading to repeating 

scan patterns. It is unknown if exogenous influences differ across individuals. If 

exogenous influences are assumed to be similar to reflexes (and therefore likely to be 

similar across individuals), then repeating scan patterns on the same stimulus should be 

very similar across individuals. (Note that this does not imply that scan patterns will be 

identical, but only very similar as there is likely noise in the visual system keeping scan 

patterns from being consistently exact.) However, if exogenous influences differ 

between individuals, then repeating scan patterns would likely differ between 

individuals.  

The extreme influences are clearly difficult to distinguish with observable behavior. 

Indeed, it is unlikely that either extreme influence (endogenous or exogenous) is ever in 

sole command of behavior. Rather, it is more likely that behavior results from influences 

falling somewhere between these extremes. Learning is assumed to be absent in both 

extremes. Endogenous influences may occur after learning had ceased such as a settled 

on and deliberate strategy, while purely exogenous influences are by definition void of 

learning. Although it would be difficult to differentiate between endogenous and 

exogenous influences, it is possible to detect differences between statistical and 

endogenous influences, and statistical and exogenous influences. This is because effects 

of statistical influences are useful to the processes associated with learning and 

adaptation (Blessing & Anderson, 1996; Gray, Sims, Fu, & Schoelles, 2006; Haider & 

Frensch, 1999). As experience with a task environment and a paired goal increase, 

influences may shift from what appear to be exogenous influences to what appear to be 

to be endogenous influences, though may never become a deliberate or consciously 

executed strategy. 

1.2.3 Summary 

FAST incorporates the phenomena of repeating scan patterns with the behavior-

refinement hypothesis into a single theory of visual scanning. FAST maintains that 

visual scans are functional and can be adapted through a behavior-refinement process. 

For refinement to occur, the task environment must support it through statistical 
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regularity between the stimulus and the task goal, and the stimulus-goal pair must occur 

repeatedly. To claim evidence for FAST, three criteria must be met: (1) participants must 

reduce the number of saccades necessary to complete a goal with increased experience, 

(2) visual scans must become increasingly similar across repeated searches through the 

same stimulus independent of the number of saccades comprising scans, and (3) 

scanning patterns from viewing repeating stimuli must become more similar at a faster 

rate than novel stimuli. 

To provide evidence for FAST, a paradigm that satisfies 3 important criteria must 

be adopted. First, the paradigm must contain multiple repeating stimuli across several 

trials. Second, each stimulus must be independent and associated with a specific goal 

(e.g., visual search). Third, the paradigm must use adequate controls with which to 

compare visual scans from repeating stimuli, such as multiple unique stimuli. The 

contextual cueing paradigm satisfies all three criteria (Chun & Jiang, 1998). Contextual 

cueing is a phenomenon that produces shorter reaction times when finding a target in 

repeating stimuli than in unique stimuli, and has been shown to result from implicit 

processes. Interestingly, the contextual cueing phenomena can be simply explained as a 

by-product of FAST, and no special hypotheses are needed. Furthermore, the FAST 

explanation of contextual cueing differs from the accepted account. In the next section, 

the contextual cueing paradigm will be introduced along with important aspects of the 

contextual cueing phenomenon, as well as the accepted theory of the cueing process.   

1.3 Contextual Cueing 

When visual contexts are repeatedly viewed in the service of the same goal, the goal is 

completed at an increasingly faster rate than the same goal in novel contexts (Chun, 

2000; Chun & Jiang, 1998; Song & Jiang, 2005). For example, repeatedly viewed 

visuospatial configurations of items on a display, or contexts, can reduce the time to find 

a target (goal) across repeated searches through the same contexts. Chun, Jiang, and 

others show that repeatedly viewed contexts guide spatial attention to the target location 

during visual search (Chun, 2000; Chun & Jiang, 1998; Jiang & Wagner, 2004; Song & 

Jiang, 2005), and that paired associations between a context and the associated target 

location occur implicitly. This effect is referred to as contextual cueing.  
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Contextual cueing is an implicit adaptation to functional relationships within the 

task environment (Chun & Jiang, 1998), resulting in the minimization of cost, in units of 

time, at the task level (Gray, Sims, Fu, & Schoelles, 2006; Myers & Gray, submitted). 

Although contextual cueing has been documented and its underlying processes alluded 

to in many studies (Chun, 2000; Chun & Jiang, 1998; Jiang & Wagner, 2004; Lleras & 

Von Muhlenen, 2004; Peterson & Kramer, 2001; Song & Jiang, 2005), a process account 

involving saccades remains absent from explanations of cueing effects. The current 

section introduces the typical contextual cueing paradigm, provides an overview of 

essential results, and relates the paradigm and phenomenon back to FAST. 

1.3.1 Contextual Cueing Paradigm 

The contextual cueing paradigm is a visual search task with very similar targets and 

distracters, making search serial and inefficient. Similar target and distractor types 

reduce “any attentional capacity to perform explicit cognitive operations other than 

search,” (Chun & Jiang, 1998, p. 33). Participants search for a target within repeating 

and unique contexts, and the target is present on every trial. Context is operationally 

defined as the visuospatial arrangement of target and distractor items.  

Participants are presented with a context, and their goal is to find the target. Once 

the target is found, participants respond to a particular feature of the target, such as its 

orientation.  

Targets in repeating contexts are always presented at the same location, but the 

target feature associated with the correct response may change. For example, the first 

time you see repeating context A the target may be oriented so that the correct response 

is “right”. The next time you see repeating context A the target will be in the same 

location, but could be oriented so that the correct response is now “left”. Consequently, 

target location is cued by the context, rather than the response (e.g., right or left). Unique 

contexts are not predictive of the target location, providing a control. Each experiment 

presents many trials from which only a very small set (≈ 3% of all trials) are repeating 

contexts.  

Response times have been the only dependent variable reported in contextual cueing 

experiments. Results regularly demonstrate reduced response times for both repeating 
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and unique contexts over blocks of trials. However, response times from repeating 

contexts become increasingly faster than response times from unique contexts, and this 

difference is the contextual cueing effect (see Figure 3). 

 

Figure 3. Contextual cueing effect. Search reaction time (ms) for repeating contexts (old) improve 

beyond unique contexts (new) by the end of the 5th block (Figure 2 from Chun & Jiang, 1998, p. 38). 

It is important to report how unique and repeating contexts are typically created. 

The frequency with which a target may appear in a given location is equated for both 

repeated and unique context. The following steps provide a walkthrough of the process. 

First, an even number of different target locations is determined. Half of the target 

locations are for unique contexts, and half are for repeating contexts. Distractor locations 

are then added to target locations for repeating contexts, under the condition that the 

added distractor locations do not come within a specified minimum item-to-item 

distance. Once this is done, the same repeating contexts are used across the experiment. 

Consequently, when it is time to display one of the repeating contexts, a repeating 

context is randomly selected without replacement from the set of repeating contexts and 

displayed to the participant.  

When it is time to display one of the unique contexts, one of the target locations set 

aside for unique contexts is randomly selected without replacement. Distractor locations 

are then added to the target location to create a unique context, under the condition that 
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the items (distractors and targets) do not come within the specified minimum item-to-

item distance.  

Once the sets of unique context target locations and repeating contexts have been 

exhausted, a new block of trials begins with the same unique context target locations and 

the same repeating contexts. Consequently, unique contexts are not completely unique, 

as target locations repeat from block to block. The repetition of unique context target 

locations across blocks was implemented to control for learning of a relatively small 

number of target locations necessary for repeating contexts. If a contextual cueing effect 

had occurred without controlling for the learning of target locations, it would be 

impossible to conclude that the repeating spatial configurations were leading to the 

speed up in response times. 

1.3.2 Overview of Results from Contextual Cueing Experiments 

Searches through repeating contexts improve search times beyond those from unique 

contexts. Improvements are hypothesized to result from the cueing of target locations 

from repeating contexts. Furthermore, it is hypothesized that memory for visual context 

is instance based and implicitly learned over repeated exposure to the same context. This 

section highlights essential results from the contextual cueing literature. 

Chun and Jiang (1998) conducted a series of experiments that introduced the 

contextual cueing effect. The authors found that changes to the item features at distractor 

and target locations across trials of repeating contexts (e.g., locations originally 

containing a ‘3’ changed to contain ‘B’) did not hinder cueing (Chun & Jiang, 1998, 

experiment 3), demonstrating cueing results from the spatial arrangement of locations 

rather than the information at each location. Repeating contexts reliably cued target 

location during a speeded response phase consisting of briefly presented stimuli (200 

ms). The phase occurred after contextual cueing was established during a long training 

period (Chun & Jiang, 1998, experiment 5). Finally, contextual cueing effects remained 

robust in the face of random distractor and target location jitter, and when two target 

locations were paired with the same repeating context (Chun & Jiang, 1998, experiment 

6), demonstrating that minor contextual noise does not impede cueing. 
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Chun & Jiang (1998, experiment 5) attempted to rule out scan patterns as the 

contextual cueing mechanism. Participants completed a 3-phase task. During the training 

phase, participants were instructed to find a rotated target (T) among rotated distractors 

(L) and respond to the target’s direction (right or left). This phase continued for 20 

blocks of trials. Within a block, all stimulus configurations (i.e., contexts) were unique, 

however, across blocks, 12 configurations repeated. Thus, participants viewed 12 

repeating contexts 20 times each, and 240 unique contexts once each.  

Three displays composed a single trial during the training phase: a dwell control 

display, a stimulus display, and a feedback display. Participants were instructed to fixate 

a small dot on the dwell control display until the stimulus display was presented (≈ 500 

ms). The stimulus display remained visible until a response was given. After the 

response, a blank screen was displayed and accuracy feedback was provided. The 

feedback display remained for 1,000 ms and was then replaced by a dwell control 

display signaling a new trial. Chun and Jiang (1998) report that participants 

demonstrated a cueing effect by the end of the training phase.  

After completing the training phase, participants completed a testing-practice phase 

and testing phase. During the testing-practice and testing phases, four displays composed 

a single trial. Each trial began with a dwell control display that remained visible for 600 

ms followed by the stimulus. The stimulus display was presented for 200 ms. After 200 

ms, the stimulus was replaced with a blank screen that remained present until the 

participant responded with the rotation of the target. Following a response, accuracy 

feedback was presented with tones signaling either correct or incorrect responses. After 

1000 ms, the dwell control display reappeared signaling a new trial. In the testing-

practice phase, participants completed 2 blocks of unique context trials (24 total trials). 

In the testing phase, participants completed 10 blocks of unique and repeating context 

trials. The key comparison of the testing phase was the accuracy levels between 

repeating and unique contexts. Chun & Jiang (1998) report that participants 

demonstrated a significant 5% accuracy increase for repeating contexts (78.5%) when 

compared to unique contexts (73.5%). 

Jiang and Wagner (2004) tested whether participants were cued by the complete 

visuospatial context or with individual locations of items within the context. Participants 
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were trained on a set of 36 repeating contexts and 18 target locations. Thus, two 

repeating contexts had the same target location. After a training period where 

participants searched through repeating and unique contexts, participants completed a 

transfer session. During the transfer session, participants were tested on all of the 

repeating contexts from the training period, a set of unique contexts, and a set of hybrid 

contexts. Because there was a single target location shared between two repeating 

contexts, half of the items that composed one repeating context were combined with half 

of the items that composed the second repeating context that shared the same target 

location. Thus, if contextual cueing is the result of learning the entire context, then the 

response times for the original repeating contexts should be faster than the hybrid 

contexts. However, if contextual cueing is the result of learning only parts of repeating 

contexts, the response times for the hybrid contexts should be approximately equal to the 

original repeating contexts. The results indicate that only a subset of the spatial 

configuration of repeating contexts were used to obtain a cueing effect.  

Indeed, Jiang and Wagner were surprised that contextual cueing occurred in the 

hybrid contexts. The authors questioned if the entire visuospatial pattern of displayed 

repeating contexts is ever learned (Jiang & Wagner, 2004). Participants were initially 

trained on a set of repeating contexts to the point that a robust cueing effect was 

established. After training, participants were tested on the same repeating contexts; 

however, they were now displaced or rescaled. Scaling and displacing a repeating 

context changes the exact item locations (i.e. Euclidean coordinate) while maintaining 

the relative visuospatial relationship of the repeating context. It is unclear why this was 

tested, as Chun and Jiang (1998) demonstrated that random distractor jitter did not 

reduce cueing effects. Not surprisingly, Jiang and Wagner found that cueing was 

maintained for the rescaled and displaced repeating contexts. The authors conclude that 

two types of context learning occur: (1) the “pattern” of associations between items 

composing a repeating context is learned and paired with the target location and (2) the 

association between each item composing a repeating context and the target location is 

learned. 

Song & Jiang (2005) conducted three experiments to determine the minimum 

number of unchanging item locations necessary to elicit cueing effects. In the first two 
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experiments, participants were trained on a set of repeating contexts interleaved with 

unique contexts, each containing 12 items (11 distractors and 1 target). After 

establishing a reliable cueing effect, participants were tested in a transfer phase that 

included new semi-repeating contexts that matched the repeating contexts from training 

across a range of item locations. The new semi-repeating contexts contained either 1 

identical item location (target location only), 2 identical item locations (target location + 

1 distractor location), 3 identical item locations (target location + 2 distractor locations), 

4 identical item locations (target location + 3 distractor locations), or all 12 identical 

items locations (i.e., repeating context). The results indicate that at least 3 item locations 

from a previously viewed repeating context are necessary to evoke a reliable contextual 

cueing effect that is just as robust as the one established during training. 

In their third experiment, Song & Jiang (2005) tested if contextual cueing effects 

could be acquired during training with only 3 unchanging item locations (target location 

+ 2 distractor locations) and 9 varying distractor locations in repeating contexts. The 

results indicate that varying 9 item locations in repeating contexts during training does 

not produce a contextual cueing effect. The authors conclude that a strong “matching 

signal” (Song & Jiang, 2005, p. 329) constructed during the learning phase is necessary 

to build up a stable memory representation that reliably cues the target’s location. The 

authors hypothesize that a “similarity index” is calculated to determine the match 

between a currently viewed context and one stored in memory, and the similarity 

calculation can be based on the entire context or a subset thereof (Song & Jiang, 2005). 

These processes must occur within 600-800 ms as demonstrated in experiment 5 by 

Chun and Jiang (1998, p. 54, Table 5) 

Peterson and Kramer (2001) conducted experiments to examine the extent to which 

the capture of attention by abrupt onset distractors would disrupt the acquisition and use 

of memory-based attention guidance, as in contextual cueing. In the first experiment, 

abrupt onset distractors were introduced at the beginning of practice on the search task. 

Response time results indicated that onset distractors and repeating contexts had 

independent and opposing influences on the efficiency of search. In the third experiment, 

abrupt onset distractors were introduced after repeating contexts effectively cued target 

location. In this case contextual cueing partially suppressed the detrimental influence of 
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the abrupt onset distractors on search performance within repeating contexts. Peterson 

and Kramer (2001) provide evidence that contextual cueing effects suppress, or override, 

exogenous influences such as attentional capture. 

In summary, contextual cueing is an example of the cognitive system capitalizing on 

environmental regularities, such as when item locations composing a context repeat 

across trials. Cueing continues to occur after training when only a subset of items repeat 

(at least 3), when item features at item locations within contexts are changed (e.g., from 

“B “to “3”), and when item locations are rescaled or randomly jittered. Contextual 

cueing does not occur when a small subset of items (3) repeat across views of repeating 

contexts during training or when abrupt onsets occur during training. Finally, eye 

movements have been deemed unnecessary to obtain benefits from contextual cueing 

after contextual cueing is established. 

1.3.3 FAST and Contextual Cueing 

The current section highlights synergies between FAST and contextual cueing research. 

First, the contextual cueing paradigm is adequate for testing FAST. To test FAST, a 

paradigm that satisfies 3 criteria must be adopted: (1) the paradigm must contain 

multiple repeating stimuli across several trials; (2) each repeating stimulus must be 

independent and associated with a specific goal (e.g., visual search); (3) the paradigm 

must use adequate controls with which to compare visual scans from repeating stimuli, 

such as multiple unique stimuli. The contextual cueing paradigm satisfies all three 

criteria.  

Second, the contextual cueing phenomena can be simply explained as a by-product 

of behavioral mechanisms hypothesized in FAST, providing an alternative account of 

the cueing process to that hypothesized by Chun and colleagues. FAST maintains that 

visual scans are functional and can be adapted through a behavior-refinement process. 

To claim evidence for FAST, three criteria must be met: (1) scan patterns must repeat 

and become increasingly similar across repeated searches through the same stimulus 

independent of the number of saccades comprising scans, (2) the number of saccades 

comprising scans must be reduced to complete a goal with increased experience, and (3) 
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scan patterns from repeating contexts must become more similar at a faster rate than 

scan patterns from unique contexts. 

First, the generally accepted theory of the contextual cueing phenomenon is 

covered. Next, an alternative theory is provided with FAST. The section closes with 

specific scanning hypotheses derived from FAST within the contextual cueing paradigm. 

1.3.3.1 Previously Proposed Theory of Contextual Cueing 

Generally, contextual cueing is hypothesized to require a “… powerful and sophisticated 

memory … to encode and maintain distinctive representations of such rather 

homogeneous displays.” (Chun & Jiang, 1998, p. 33), and to rely “… on a highly 

discriminative instance-based memory for spatial configurations.” (Chun & Jiang, 1998, 

p. 38). Furthermore, Chun and Jiang postulate, “… that contextual cueing is driven by a 

beneficial interaction between an instance-based visual memory and spatial attention 

rather than the facilitation of perceptual and attentional processing per se.” (1998, p. 39). 

Chun and Jiang invoke “context maps” as a new type of instance-based memory store 

for visual memory traces of context (1998, p. 39). This hypothesis follows from the 

passive approach flavor to studying the visual system – once the eyes absorb a stimulus, 

it is transmitted to the cognitive system, where “instance-based visual memory” and 

“spatial attention” “interact” and result in “context maps,” which are then stored for later 

use. If this were the case, why would eyes ever need to move? The current theory does 

not contain adequate accounts of instance-based visual memory and context maps. 

Moreover, instance-based visual memory and context maps could be red herrings with 

regard to the underlying processes of contextual cueing. 

Jiang and Wagner (2004) continue to postulate the mechanisms behind contextual 

cueing, and seem to be moving toward an active vision account. The authors suggest that 

associations, “… between the target and each individual distractor may be acquired 

because of the serial manner of conjunction search…The distractors visited prior to 

finding the target become potentially predictive of where the target is.” (2004, p. 457). 

This hypothesis suggests that the relative spatial arrangement of items is necessary, and 

that over “… repeated navigation within the same environment, the subjects may 

gradually integrate discrete, isolated locations into one spatial schema. They might then 
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rely more on the relative distractor locations than on isolated distractor–target 

associations to locate the target.” (Jiang & Wagner, 2004; pp. 462). 

Finally, Song & Jiang (2005, p. 329) ask “What is the mechanism that allows the 

visual system to determine the match between an incoming display and a previous 

memory?” and answer: 

“…we believe that a similarity index is calculated: A new display is 
compared with previous memory instance [sic]. The more similar the two 
displays are, the more likely the visual system will rely on the retrieved 
memory to find the target. The calculation of similarity can be based on 
the entire configuration (how similar the whole display is to a previous 
memory configuration), or on a subset of the configuration, or even 
individual locations (Jiang & Wagner, 2004). Whether similarity is 
calculated on the basis of global display characteristics or on local 
features remains to be tested. Nonetheless, the degree of match needs to 
be higher during the initial learning phase before a strong memory trace is 
established.” 

Clearly, this response is framed in the passive vision approach. A stimulus is 

absorbed through the eyes and transmitted through the cognitive system as a context 

map. The new context map is somehow compared to many (millions, billions, trillions) 

previously computed context maps, each containing some number of common item 

locations. The comparisons are intended to determine the similarity between the current 

and stored context maps. Arguably, this hypothesis suggests that if the maps are similar, 

the response location is retrieved; however, there is neither a proposed mechanism for 

determining similarity, nor speculation of how similar context maps must be before 

cueing occurs. Yet another question arises: does the comparison occur during or after 

terminating search? Moreover, how long do these processes take to execute? Finally, do 

the eyes move during these processes or are they merely laying in wait? And, if they do 

move, what effect does this have on the developing context map, the similarity 

computation between the developing context map and stored maps, and resultant context 

map retrieval? 

Never is a concrete contextual cueing mechanism proposed or tested; rather, more 

and more studies are suggested to narrow down the underlying mechanisms – it seems 

like the leading proponents of contextual cueing are playing 20 questions with nature, 

and losing (Newell, 1973). 
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1.3.3.2 A FAST Account of Contextual Cueing 

The phenomenon of contextual cueing has been studied and explained through the 

passive vision approach. The following passage can be used to elucidate the limits to 

understanding visual phenomena using only the passive approach to vision research: 

“Behavior is guided and constrained by the stimulus environment but, at 
any given moment, there are an overwhelming number of objects and 
events competing for visual awareness and control of action. This is the 
well-known problem of information overload…If bottom-up visual cues 
are not always useful, then what cues exist to guide visual selection? One 
strong candidate is visual context, a factor that is present in almost all acts 
of everyday perception” (Chun, 2000, p. 170). 

Chun (2000) seems to miss the point that goals can, and do, drive visual behavior. 

Furthermore, this passive approach to contextual cueing seems to have failed at 

discriminating the underlying cueing mechanisms.  

The mechanisms leading to cueing may be revealed through an active vision 

approach, such as FAST. For instance, it is possible that the similarity comparisons that 

Song and Jiang (2005) allude to are actually shifts of attention that result in repeating 

scan patterns across a stimulus. As visual attention shifts from location to location, the 

eyes move across a stimulus acquiring information at each location (Godijn & Pratt, 

2002). Memory retrievals could occur to retrieve a target location that was previously 

found using the same shifts of attention/scanning pattern. This notion is similar to 

recalling information about an imagined stimulus via saccades across the imagined 

stimulus (Laeng & Teodorescu, 2002). Without an active vision approach to contextual 

cueing, this hypothesis would never be considered or tested. 

FAST will also help to identify underlying processes influencing contextual cueing. 

As discussed earlier there are three influences affecting saccades–exogenous, 

endogenous, and statistical. Such influences are statistical in nature, where endogenous 

and exogenous are opposing extremes of the statistical influence spectrum (see Figure 

1). The influences vicariously affect scanning patterns through individual saccades.  

Behavior from purely endogenous influences would not be refined, even though 

alternative endogenous strategies could, and probably would, exist. Endogenous 

influences would either occur after learning had ceased (i.e., such as a settled on and 

deliberate strategy), or repeatedly using the same scan pattern on the same stimulus after 
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the initial view of the stimulus, as predicted by scanpath theory.  Behavior from purely 

exogenous influences would not be refined, because they are, by definition, void of 

learning. The same stimulus would always influence scan patterns in the same manner, 

leading to repeating scan patterns.  

Although it would be difficult to differentiate between endogenous and exogenous 

influences, it is possible to detect differences between statistical and endogenous 

influences, and statistical and exogenous influences. Indeed, as experience with a task 

environment and a paired goal increase, repeating scan patterns may shift from what 

appears to be more exogenous to what appears to be more endogenous, though the 

pattern(s) may never become explicit or consciously executed. Interestingly, Chun and 

Jiang (1998) have convincingly demonstrated that contextual cueing is an implicit 

process. 

Given the connection between FAST and the contextual cueing paradigm and 

phenomenon clear predictions about visual scan patterns in the contextual cueing 

paradigm are now possible. The predictions can be divided into predictions about visual 

scans across repeating and unique contexts. Unique contexts have repeating target 

locations, so there is a small degree of environmental stability that the cognitive system 

can use to its advantage. Repeating contexts have a very high degree of environmental 

stability. Although unique contexts are not truly unique, they still provide a good control 

group of contexts to compare against changes in scan patterns from repeating contexts. 

Predictions derived from FAST are: (1) the number of saccades to find the target will be 

reduced across repeating and unique contexts, (2) visual scan patterns will increase in 

similarity across repeated searches through repeating and unique contexts, independent 

of the number of saccades comprising scans, and (3) scan patterns from repeating 

contexts will increase in similarity at a greater rate than scan patterns from unique 

contexts because more information repeats in repeating contexts than in unique contexts. 

1.4 Summary of Introduction & Historical Review 

Cognitive functions are influenced through mechanisms that are sensitive to statistical 

properties of the functional task environment (Anderson & Schooler, 1991; Gray, Neth, 

& Schoelles, in press). Endogenous and exogenous influences represent extreme degrees 
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of statistical influences from the environment. Statistical influences are mediated 

through a strict cognitive cost-benefit accounting of behavior in terms of time (Gray & 

Fu, 2004; Gray, Sims, Fu, & Schoelles, 2006), and have been shown to influence visual 

attention (Reder, Weber, Shang, & Vanyukov, 2003) and saccades (Myers & Gray, 

submitted).  

Influences affecting single saccades can be scaled up to understand how sequences 

of saccades, or visual scans, are affected by deliberate strategies, statistical properties of 

the functional task environment, and stimulus features comprising the task environment. 

Indeed, scan patterns can repeat across the same stimulus (Josephson & Holmes, 2002; 

Pieters, Rosbergen, & Wedel, 1999). Scanpath theory postulates that repeating scan 

patterns result only from stored information (i.e., purely endogenously influenced, Noton 

& Stark, 1971a, 1971b). Finally, repeating scan patterns are functional to recalling 

information stored in memory about a previously viewed scene (Brandt, Stark, 

Hacisalihzade, Allen, & Tharp, 1989; Laeng & Teodorescu, 2002).  

Functionally adaptive scanning was introduced as a theory of when and how 

repeated scan patterns change. FAST assumes that visual scan patterns repeat across 

multiple searches through the same stimulus. Furthermore, FAST assumes that visual 

scans play a functional role during tasks, as in providing cues for recalling the location 

of task relevant information. Unlike scanpath theory, FAST predicts that repeating scan 

patterns will be refined across repeated uses to reduce the amount of time to complete 

the goal (i.e., find a target) while maintaining accuracy.  

Contextual cueing research reported by Chun (2000) and neurocognitive scanpath 

research reported by Grosbras et al. (2001) hail known neural correlates of memory (i.e., 

the hippocampal and parahippocampal areas) as integral to repeating scan patterns and 

contextual cueing. Although this does not provide evidence of causation, it also does not 

rule out the possibility of the same neural mechanism being involved in both 

phenomena.  

The contextual cueing paradigm is well suited for testing FAST. Moreover, FAST 

provides an alternative theory to the contextual cueing phenomenon. FAST predictions 

of visual scanning in the contextual cueing paradigm are: (1) visual scan patterns will 

increase in similarity across repeated searches through repeating and unique contexts, 
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independent of the number of saccades comprising scans, (2) the number of saccades to 

find the target will be reduced across repeating and unique contexts, and (3) scan 

patterns from repeating contexts will increase in similarity at a greater rate than scan 

patterns from unique contexts. 
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2. Empirical Investigations 

Three experiments were conducted to test FAST using the contextual cueing paradigm. 

All experiments were designed to determine if scan patterns repeat and are refined across 

multiple searches through repeating contexts. The first experiment was also conducted to 

counter Chun & Jiang’s conclusion that “contextual cueing can be obtained without eye 

movements” (1998, p. 56). There are problems with Chun & Jiang’s eye movement 

controls, and experiment 1 improves on them. Experiment 1 results should be similar to 

Chun & Jiang’s experiment 5 (1998) if eye movements are unnecessary to elicit 

contextual cueing effects. The second experiment tested subtle paradigm differences 

between experiment 1 and Chun & Jiang’s experiment 5 to determine if the differences 

contributed to experiment 1 results. Experiment 3 tested effects of cognitive load within 

the contextual cuing task to examine influences on scanning patterns.  

2.1 Experiment 1 

There were two goals of experiment 1. The first goal was to determine if repeating scan 

patterns are refined across multiple searches through repeating contexts. The second goal 

was to demonstrate that eye movements are necessary to elicit contextual cueing. Chun 

and Jiang (1998) present evidence that eye movements are unnecessary to elicit 

contextual cueing after cueing has been established; however, Chun and Jiang did not 

adequately control for eye movements. The following section reprises Chun and Jiang’s 

(1998) method for determining if eye movements are unnecessary for contextual cueing. 

Next, experiment 1 method is contrasted to Chun and Jiang’s method, followed by the 

results and conclusions of the experiment. 

2.1.1 Experiment 1 Methods 

Chun & Jiang (1998, experiment 5) attempted to rule out the proceduralization of 

repeating scan patterns as the contextual cueing mechanism. Participants were instructed 

to find a target among distractors and respond to the target’s orientation. Participants 

performed three phases of trials: training, testing-practice, and testing. Participants 

exhibited a contextual cueing effect by the end of the training phase. 
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Trials in the testing phases (testing-practice and testing) were different from those in 

the training phase. In the training phase, participants could exhaustively search the 

stimulus for the target and then respond. In the testing phases, the stimulus was flashed 

to participants, remaining visible for only 200 ms. The brief stimulus presentation was 

believed to be an adequate eye movement control. Once the stimulus disappeared, the 

display remained blank until participants responded with the target’s direction. After 

responding, a new trial began. In the testing-practice phase, participants completed only 

unique context trials. In the testing phase, participants completed trials of repeating and 

unique contexts.  

The key comparison to show that eye movements are unnecessary to benefit from 

established contextual cueing was the accuracy levels between repeating and unique 

contexts from the testing phase. Chun & Jiang report that participants achieved a 

significant 5% increase in accuracy for repeating contexts (78.5%) when compared to 

unique contexts (73.5%). Indeed, Chun & Jiang (1998) found a marked decline in 

accuracy – from a mean of 99% correct in the training phase to a mean of 74% correct in 

the testing phase. Finally, it is clear that participants’ response times lasted well beyond 

the offset of the stimulus (≈ 600 ms, Chun & Jiang, 1998, p. 54, Table 5). Chun and 

Jiang conclude that the proceduralization of repeating scan patterns could not contribute 

to the cueing effect. 

The 200 ms stimulus presentation was presumed to control for eye movements. 

Rather, it controls for the duration the stimulus is presented and participants are free to 

move their eyes. Indeed, participants took ≈ 810 ms to respond to the stimulus. If the 

average dwell time is taken to be ≈ 200 ms and the average saccade time to be ≈ 25 ms, 

then ≈ 3.5 saccade-dwell pairs can be completed before a response is made. The method 

for the current experiment uses a slightly modified version of Chun and Jiang’s (1998) 

method (minimum-control) and adds a second between-participants condition 

(maximum-control) that improves eye movement controls throughout a trial and presents 

visual masks during feedback. 



 

 34 

2.1.1.1 Experiment 1 Task Overview 

As in Chun and Jiang’s experiment 5 (1998), participants were to locate a target (T) 

among distractors (L) and respond as quickly and accurately as possible to the target’s 

orientation. First, participants fixated crosshairs on a dwell control display for 600 ms. 

The crosshairs were gaze-contingent–changing from green to red when the participant 

was not staring at them, and changed back to green when the participant returned gaze to 

the crosshairs. Gaze contingency was introduced to provide real-time feedback that 

participants needed to fixate the crosshairs when their gaze shifted away from the 

crosshairs. After 600 ms, a stimulus with 11 distractors and 1 target was presented and 

participants were to find the target as quickly and accurately as possible. After 

responding to the target’s orientation, accuracy feedback was provided to the participant 

(see Figure 4).  

 

Figure 4. Experiment 1 flow. Participants began the experiment in the training phase and were 

transferred to the testing phase after completing 20 blocks of trials. Participants were randomly 

assigned to either the minimum- or maximum-control groups. 

Participants completed 3 phases: training, testing-practice and testing. Participants 

performed 20 blocks (1 block = 24 trials) in the training phase, 2 blocks in the testing-

practice phase, and 10 blocks in the testing phase. Each block contained 12 repeating 

and 12 unique contexts, presented in random order (excluding the 2 blocks of the testing-

practice phase which only used unique contexts). After completing the 20th block of 

training, all participants were transferred to the testing-practice phase, and then to the 

testing phase. 
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2.1.1.1.1 Experiment 1 Design 

Experiment 1 used a 2(dwell-control) x [2(phase) x 2(context-type)] mixed experimental 

design. There were two between-participant dwell control groups (maximum-control, 

minimum-control) that each started with the training phase and moved to a testing phase, 

and searched through repeating and unique contexts (see Figure 4).  

The minimum-control group’s testing phase was a slightly modified version of 

Chun & Jiang’s method. In experiment 1, the minimum-control group was allowed to 

move their eyes about a stimulus during its 200 ms presentation. After the stimulus 

disappeared, a blank display was presented to participants until a response was given. 

After the participant issued a response, accuracy feedback was presented visually (e.g., 

“correct” or “incorrect”) for 1 second followed by the initial fixation display constituting 

the beginning of a new trial. The only difference between the minimum-control group 

testing-phase and Chun and Jiang’s (1998, experiment 5) testing-phase were gaze-

contingent crosshairs instead of a non-gaze-contingent black dot. 

The maximum-control group’s testing-phase differed considerably from Chun & 

Jiang’s testing phase in two important ways. First, gaze-contingent crosshairs were 

present on all displays in the maximum-control testing phase condition, and helped to 

ensure eye movements did not occur at anytime throughout a trial. Second, a visual mask 

was presented after stimulus presentation. After the 200 ms stimulus presentation, a 

mask appeared in the form of a 30 x 30 grid of ‘X’s along with the gaze-contingent 

crosshairs. Participants were instructed to continue looking at the crosshairs and respond 

as accurately as possible to the orientation of the target. Indeed, accuracy was stressed. 

Once a participant responded, accuracy feedback was provided and lasted for 1 second 

(see Figure 4). 

The minimum-control group’s testing phase was very similar to Chun and Jiang’s 

(1998), while the maximum-control group had more eye movement controls. If the 

proceduralization of eye movements is not the mechanism behind contextual cueing, 

then both the minimum- and maximum-control conditions should duplicate Chun and 

Jiang’s experiment 5 results (1998). One could argue that introducing gaze-contingent 

crosshairs when a context is flashed for 200 ms alters the context enough that benefits 

from contextual cueing would not occur; however, contextual cueing remains robust 
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after training when context rescaling occurs (Jiang & Wagner, 2004), changes occur in 

distractor locations (Song & Jiang, 2005), contexts are hybridized (Jiang & Wagner, 

2004), and salient abrupt-onset distractors are presented (Peterson & Kramer, 2001). 

2.1.1.2 Apparatus 

2.1.1.2.1 Task Environment 

The task environment was built in-house using ANSI common Lisp in the LispWorks 

development environment. The task environment ran on Apple Macintosh OS 10.4.4. 

Each stimulus configuration contained 12 items, eleven “L” and one “T”. Items 

were oriented in either the 90° or 270° position. Participants responded to the direction 

of the “T” using a Cedrus® response pad by pressing right if the T’s top was on the 

right, and left if the top was on the left (see Figure 5). Stimuli were presented on a 17” 

flat-panel display at a resolution of 1280 x 1024. Each item subtended ≈ 2° of visual 

angle. The center of all items was separated by a minimum of ≈ 3° of visual angle at a 

viewing distance of ≈ 22 inches. Consequently, the minimum distance between items 

was ≈ 1° of visual angle.  

A single trial consisted of three displays. First, a participant fixated crosshairs (+) on 

the dwell control display to ensure that all participants began searching from the center 

of the display. After 600 milliseconds, the stimulus display appeared whether or not 

participants’ gaze was on the crosshairs. The participant completed the trial by finding 

and responding to the target’s (T) direction (right or left). Responses were captured 

using a Cedrus© response box (see Figure 5). After participants’ response, accuracy 

feedback was provided and lasted for 1 second (see Figure 4).  
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Figure 5. Cedrus response pad configuration. Participants responded to a target’s (T) orientation by 

pressing the blue, left button if the T’s top was facing leftward, otherwise they responded by 

pressing the red, right button. 

2.1.1.2.2 Eye Tracker 

A binocular Eyegaze Analysis System©, manufactured by LC Technologies, Inc., was 

used to track participants’ point-of-gaze. The system has a 120 Hz sampling rate and is 

accurate to 0.45° of visual angle (0.15 inch) at a distance of ≈ 22 inches. The system 

runs on Microsoft Windows XP and communicates with the task environment over a 

TCP/IP connection. 

2.1.1.3 Participants 

A total of 42 students from Rensselaer Polytechnic Institute consented to participate in 

the experiment. Appropriate experiment credit was provided to each participant. 

2.1.1.4 Procedure 

After signing an informed consent form, each participant was randomly assigned to a 

testing-phase group. Next, each participant was given the appropriate task instructions. 

Following instructions, each participant was calibrated to the eye tracker. Next, 

participants completed the 20 blocks (480 trials) of the training phase. Participants took 

a mandatory 10-second break after each block of 24 trials, as in Chun and Jiang 

(experiment 5, , 1998). After completing the training phase, each participant was 

presented with the appropriate testing phase instructions and completed 2 blocks (48 
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trials) of the testing-practice phase, composed solely of unique contexts. After the 

testing-practice phase trials, each participant completed the testing phase (10 blocks; 240 

trials). 

2.1.2 Experiment 1 Results 

First, results will be presented on gaze position control during the dwell control display. 

Second, accuracy and response times are reported for the training phase, followed by 

accuracy and response time analyses for the testing phase. Finally, scan pattern analyses 

are presented. The 48 speeded-response practice trials were excluded from all analyses. 

2.1.2.1 Experiment 1 Training Phase 

Gaze control, accuracy, and response time analyses are reported in the following 

sections. Outliers were determined for each analysis using 2 standard deviations from the 

mean as a criterion for removal. 

2.1.2.1.1 Experiment 1 Training Phase: Gaze Control 

A 2(task-type) x [2(context-type) x 20(block)] mixed analysis of variance (ANOVA) 

was conducted to determine if there were systematic differences in the ability to fixate 

crosshairs on the dwell control display (gaze control) during the training phase that are 

attributable to the independent variables used in experiment 1. The dependent variable 

was the mean proportion of trials that resulted in the crosshairs being dwelled at the time 

of stimulus presentation within a block. All participants were included as there were no 

outliers. Block, and the context-type x block interaction, violated sphericity, thus the 

Greenhouse-Geisser correction was used (see Table A1).  

There was not a main effect of context-type [F(1,34) = 0.14; p = 0.72, NS)] 

indicating no difference in gaze control between repeating and unique contexts. There 

was a significant main effect of block [F(4.68,159.21) = 2.75, p = 0.023] where the 

mean proportion of trials beginning with dwelled crosshairs on the dwell control display 

across blocks decreased from a mean of 0.974 in block 1 to a mean of 0.927 in block 20. 

There was also a significant main effect of task-type (minimum-control, maximum-

control) [F(1,34) = 12.913; p = 0.001)], where the maximum-control group had a greater 
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proportion of trials that began with participants staring at the crosshairs (M = 0.986) than 

the minimum-control group (M = 0.921).  

2.1.2.1.2 Experiment 1 Training Phase: Trial Accuracy 

A 2(task-type) x [2(context-type) x 20(block)] mixed ANOVA was conducted to 

determine if there were systematic differences in response accuracy that are attributable 

to the independent variables. Two participants were removed from the maximum-control 

group as they exceeded 2 standard deviations below the mean level of response 

accuracy, leaving 19 participants in the maximum-control group and 21 participants in 

the minimum-control group. Block and the context-type x block interaction violated 

sphericity, thus the Greenhouse-Geisser correction was used (see Table A2).  

There were no significant effects associated with any of the independent variables, 

and the mean proportion of correct trials remained high across all twenty blocks of the 

training phase (M = 0.982). The main effect of context-type was not significant [F(1,38) 

= 0.39; p = 0.53, NS), nor was block [F(9.591,364.44) = 1.11; p = 0.36, NS), nor was the 

main effect of task-type [F(1,38) = 2.11; p = 0.16, NS). The context-type X block 

interaction was not significant [F(11.7,444.46) = 0.67; p = 0.78, NS).  

2.1.2.1.3 Experiment 1 Training Phase: Response Time 

A 2(task-type) x [2(context-type) x 20(block)] mixed ANOVA was performed on 

response times from correct trials. Two participants were removed, one from each task 

group, as they exceeded 2 standard deviations from the mean response time on correct 

trials, leaving 20 participants in the minimum-control group and 20 participants in the 

maximum-control group. Block and the context-type x block interaction violated 

sphericity, thus the Greenhouse-Geiser correction was used (see Table A3).  

There was a significant main-effect of block [F(4.51,166.95) = 25.92; p < 0.001), 

where response times were gradually reduced from a mean of 1525.92 ms in block 1 to a 

mean of 1115.9 ms in block 20. There was not a main effect of context-type [F(1,37) = 

0.78; p = 0.38, NS)] or of task-type [F(1,37) = 1.76; p = 0.19, NS)]. The context-type x 

block interaction was not significant [F(8.55,316.3) = 1.54; p = 0.19, NS)]. 
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The non-significant context-type x block interaction shows that contextual cueing 

was not present given the above set of analyses; however, Chun and Jiang (1998) 

analyzed their data differently. Instead of analyzing response times as a function of 

block, they averaged response times from 5 blocks into an epoch. Consequently, there 

were 4 epochs in their training phase. Chun and Jiang then performed the analysis on the 

response times from only epochs 1 and 4. Chun and Jiang report “a trend toward 

significance” for the context-type x epoch interaction (1998).  

Following from Chun and Jiang’s (1998) analyses, a 2(task-type) x [2(context-type) 

x 2(epoch)] mixed ANOVA was performed on response times from correct trials. The 

same two participants removed from the analyses above were removed from the current 

analysis, leaving 20 participants in the minimum-control group and 20 participants in the 

maximum-control group. There was a significant context-type x epoch interaction on 

response times, with repeating context response times decreasing at a faster rate than 

unique contexts from epoch 1 (MRepeating = 1317.9; MUnique = 1281.3) to epoch 4 

(MRepeating = 1122; MUnique = 1142), indicating the presence of contextual cueing [F(1, 

38) = 4.6, p = 0.038] (see Table A4).  

2.1.2.2 Experiment 1 Training Phase Results Summary 

First, participants had a high proportion of trials that began with staring at the crosshairs, 

as instructed. Although participants’ ability to fixate the crosshairs decreased across 

epochs, participants maintained a high level of dwell control throughout the experiment–

95% of trials began with the appropriate gaze location. Second, participants were 

regularly accurate with their responses, never dropping below 97% accuracy. Finally, 

and most importantly, repeating contexts were responded to at an increasingly faster rate 

than unique contexts from epoch 1 to epoch 4 as evidenced by the significant epoch (1, 

4) x context-type (repeating, unique) interaction. The interaction reproduces the key 

results from Chun and Jiang’s experiment 5 training phase (1998). If eye movements do 

not contribute to contextual cueing, then both the maximum-control and minimum-

control conditions should reproduce Chun and Jiang’s experiment 5 testing phase 

accuracy results (1998). However, if eye movements facilitate contextual cueing, then 
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there will not be a significant main effect of context-type on accuracy in the maximum-

control condition, but will be significant in the minimum-control condition. 

2.1.2.3 Experiment 1 Testing Phase 

There were only two epochs in the testing phase so the gaze control, response times, and 

accuracy analyses used a 2(task-type) x [2(context-type) x 10(block)] mixed ANOVA. 

2.1.2.3.1 Experiment 1 Testing Phase: Gaze Control 

A 2(task-type) x [2(configuration-type) x 10(block)] mixed ANOVA was conducted to 

determine if there were systematic differences in the ability to fixate the crosshairs on 

the dwell control display during the testing phase. Five participants were removed, 1 

from the minimum-control group and 4 from the maximum-control group, as they 

exceeded 2 standard deviations from the mean proportion of trials beginning with gaze 

centered on the crosshairs. This left 20 participants in the minimum-control group and 

17 participants in the maximum-control group. Block, and the context-type x block 

interaction, violated sphericity, thus the Greenhouse-Geisser correction was used (see 

Table A5). 

There was not a main effect of context-type [F(1, 35) = 0.0834, p > 0.77, NS] or of 

block [F(2.82, 100.89) = 0.231, p > 0.86, NS]. However, there was a main effect of task-

type [F(1, 35) = 7.85, p = 0.008], where the minimum-control group (MMin = 0.85) had a 

smaller proportion of testing phase trials beginning with gaze centered on the dwell 

control display crosshairs than the maximum-control group (MMax = 0.98). This result 

shows that the added eye movement controls in the maximum-control group (gaze 

contingent crosshairs throughout a trial) helped to ensure that participants maintained 

their gaze where they were instructed when a stimulus appeared. No other effects were 

significant 

2.1.2.3.2 Experiment 1 Testing Phase: Response Times 

Although participants in the minimum-control group did not always maintain gaze on 

the crosshairs when the stimulus was presented, Chun and Jiang did not test for gaze 

control and included all correct trials into analyses of response time and accuracy 

regardless of gaze position at stimulus onset. Consequently, all correct trials from both 



 

 42 

conditions were included in analyses. There were three outliers removed from analyses, 

all from the maximum-control group, leaving 18 participants in maximum-control and 

21 participants in minimum-control. Block, and the context-type x block interaction, 

violated sphericity, thus the Greenhouse-Geisser correction was used. 

A 2(task-type) x [2(context-type) x 10(block)] mixed ANOVA was conducted to 

determine if there were systematic differences in response times during the testing phase 

(see Table A6). There was not a main effect of context-type [F(1, 37) = 1.41, p > 0.24, 

NS] nor was there a main effect of task-type [F(1, 37) = 1.41, p > 0.29, NS]. There was a 

main effect of block [F(4.32, 159.69) = 2.56, p = 0.037] where the first block of testing 

after testing-practice was significantly slower in the mean response time (M = 871 ms) 

when compared to the last block (M = 791.9 ms). The mean response times for the 

testing phase (M = 819 ms) is only 11-12 ms higher than those reported by Chun and 

Jiang (1998, experiment 5): epoch 5 = 806.5 ms and epoch 6 = 807.5 ms. There was not 

a significant context-type x block interaction [F(4.89, 181.89) = 0.93, p > 0.6, NS] 

2.1.2.3.3 Experiment 1 Testing Phase: Trial Accuracy 

Chun and Jiang report an accuracy benefit in repeating contexts during their testing 

phase and conclude that the increased accuracy is due to contextual cueing established 

during the training phase. The dependent variable of interest is the proportion of correct 

responses; consequently, correct and incorrect trials were included. Again, following 

Chun and Jiang’s lead, all trials from the minimum-control group were included in 

analyses even though this group was significantly worse at controlling their gaze 

position at stimulus onset than the maximum-control group. There were three outliers 

removed from analyses, all from the maximum-control group, leaving 19 participants in 

maximum-control and 20 participants in minimum-control. 

A 2(task-type) x [2(context-type) x 10(block)] mixed ANOVA was performed on 

the proportion of correct trials (see Table A7). There was not a main effect of context-

type [F(1, 37) = 0.001, p > 0.97, NS], nor was there an main effect of block [F(9,333) = 

0.75, p > 0.66, NS], nor was there a main effect of task-type [F(1, 37) = 2.13, p > 0.15, 

NS]. There was not a significant context-type x block interaction [F(9, 333) = 0.71, p > 

0.69, NS].   
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2.1.2.4 Experiment 1 Testing Phase Results Summary 

There are two important results from experiment 1. First, when analyzing as a function 

of block, contextual cueing was absent. However, when aggregating blocks of trials into 

epochs of trials (as in Chun & Jiang, 1998), the effect was present. 

Second, participants’ responses were not more accurate to repeating contexts than to 

unique contexts from the testing phase. Moreover, there were no accuracy differences 

between the minimum- and maximum-control groups. Furthermore, task-type did not 

interact with context-type (repeating and unique) suggesting that improved eye 

movement controls (maximum-control) did not affect responses within repeating and 

unique contexts any differently than the minimum-control condition. Finally, the results 

did not duplicate Chun and Jiang’s experiment 5 results (1998) – there was no advantage 

in response accuracy for repeating contexts in the testing phase. 

2.1.2.5 Experiment 1 Scan Pattern Analyses 

A contextual cueing effect was found in the training phase of experiment 1. This result 

was present when aggregating blocks of trials into epochs of trials, but was not present 

when leaving trials aggregated at the block level. Indeed, Chun and Jiang’s (1998) 

response time analyses did not reveal a cueing effect. Although it would be ignorant to 

conclude that contextual cueing is an effect that comes and goes with the tides based on 

experiment 1 and Chun and Jiang (1998), it is possible that response time is not sensitive 

enough to always detect cueing. An alternative measure to response times is the 

similarity and refinement of scan patterns. 

According to FAST, there are 3 criteria of visual scan refinement that lead to 3 

specific predictions within the contextual cueing paradigm: (1) the number of dwells to 

find the target will be reduced across repeating and unique contexts, (2) scan patterns 

will repeat on repeating contexts, and will increase in similarity across repeated searches 

through repeating and unique contexts, independent of the number of saccades/dwells 

comprising scans, and (3) scan patterns from repeating contexts will increase in 

similarity at a greater rate than scan patterns from unique contexts. 

The current section presents visual scan analyses to test for scanning refinement 

during the training phase of experiment 1. The following section presents the method for 
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computing visual scan similarities. Next, the results from the scan pattern analyses are 

presented. Finally, scan pattern conclusions are drawn from the results. 

2.1.2.5.1 Method for Comparing Visual Scan Patterns 

ProtoMatch software (Myers & Schoelles, 2005) was used to delineate dwells into 

visual scans from the point a stimulus was displayed until a response was provided. 

ProtoMatch is a data analysis software tool that reads in a file of all relevant experiment 

information regarding (e.g., display items and point of gaze) collected during the 

experiment. ProtoMatch calculates dwells using a sample-based fixation algorithm (see 

Myers & Schoelles, 2005, for a full description of the algorithm). Once a dwell is 

calculated the closest display item within 2° of visual angle is assigned to the dwell. If 

there is not a display item within 2° of visual angle, “no display item” is assigned to the 

dwell. After computing all dwells, dwell sequences were divided into trials producing a 

visual scan for each trial.  

To determine the degree of similarity between two visual scans, the sequence 

alignment module within ProtoMatch was used for determining minimum-edit distances 

between two strings. The core of this module is the Levenshtein distance algorithm 

(Levenshtein, 1966) that takes a visual scan (S1) and determines the minimum number of 

insertions, deletions and replacements (edits) necessary to change it into another scan 

(S2). For example, to change “FIREMAN” (S1) into “POLICEMAN” (S2) the 

algorithm’s solution would 1) insert a “P” to the left of the “F”; 2) insert “O” to the left 

of the “F”; 3) replace “F” with “L”, and 4) replace “R” with “C”.  Therefore, the 

minimum-edit distance for changing “FIREMAN” into “POLICEMAN” is 4.   

Replacing the letters in the FIREMAN-POLICEMAN example with the order of 

items viewed (i.e., “F” = [first dwelled object] “I” = [second dwelled object] “R” = [third 

dwelled object], etc.) from a visual scan provides an example of how scans are compared 

using the Levenshtein algorithm. The alignment algorithm is similar to the minimum-

edit algorithms used by Salvucci & Anderson (2001) and Fu (2001), discussed in Card et 

al. (1983), and is a simplified version of algorithms used in bioinformatics (Thompson, 

Higgins, & Gibson, 1994) and other scanning research (Josephson & Holmes, 2002). 
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Once the minimum-edit distance between two scans is returned from the 

Levenshtein algorithm, it is normalized to control for differences in lengths of compared 

visual scans (Josephson & Holmes, 2002), providing a normalized dissimilarity index 

(NDI):  

! 

NDI =
MED

Slongest
                                                        (1) 

where MED is equal to the raw minimum-edit distance from the two compared scans 

divided by the number of dwells from the longest of the two scans (Slongest). The NDI 

represents the maximum dissimilarity between two visual scans. 

It is important to use the NDI rather than the raw MEDs because a raw MED of 6 

from two sequences may actually signify greater similarity than a raw MED of 6 from 

two different sequences. For example, suppose sequence A is 10 items long and 

sequence B is 4 items long and their minimum edit distance is 6. Now suppose that 

sequence C is 20 items long and sequence D is 14 items long and their minimum edit 

distance is 6. Going by the raw MED scores one would conclude they were equally 

similar. However, after dividing by the longest sequence the CD NDI is 0.30 while the 

AB NDI is 0.60. Here, one would conclude that sequences A and B are more dissimilar to 

each other than sequences C and D. Simply, a greater NDI refers to greater dissimilarity 

between compared sequences. Subtracting 1 from the NDI can be done to obtain the 

normalized degree of similarity, or NSI. 

NDINSI !=1                                                          (2) 

The following analyses use the NSI metric to compute scan pattern similarity differences 

between repeating and unique contexts across and within participants.  

The experiment design provides guidance on how to aggregate and compare scan 

patterns. Because repeating contexts were searched through once per block, visual scans 

were aggregated into epochs of blocks (1 epoch = 5 blocks). For each participant, 

repeating contexts within each epoch (5 views of the same repeating context) were 

compared against each other producing 10 NSIs that were then averaged to obtain the 

mean epoch NSI for each of the 12 repeating contexts. Next, the mean NSI for each 

epoch was averaged across repeating contexts to acquire the mean repeating context NSI 

for each epoch. The same process was applied to unique contexts, but because their 
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targets repeated, unique contexts were only compared with other unique contexts that 

had the same target location. This effectively mimicked the process for computing the 

repeating context NSIs (see Figure 6). 

 

Figure 6. Computing mean NSIs for each epoch of trials. 

2.1.2.5.2 Scanning Analyses for Experiment 1 

To determine if visual scans were refined across repeated searches through repeating 

contexts, NSIs were computed for each type of context for each participant. There were 

20 analyzable blocks of 24 trials (4 epochs) in the training phase of experiment 1, and 

the analyses are directed toward determining if all FAST criteria are present in the 

experiment 1 training phase.  

2.1.2.5.2.1 Criterion 1: Dwell Reduction across Repeated Search 

ProtoMatch software was used to calculate dwells, determine the items associated with 

each dwell, and calculate dependent measures associated with dwells and associated 

objects, such as dwell durations. Simply, a dwell is steady gaze positioning within 2° of 

visual angle for at least 100 ms (see Myers & Schoelles, 2005, for a full description of 

the algorithm). After removing outliers, there were 18 maximum-control participants and 

17 minimum-control participants for each of the following analyses.  

If the number of dwells to find a target is reduced across blocks of trials, then there 

is support for FAST’s second criterion. A 2(task-type) x [2(context-type) x 20(block)] 
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mixed ANOVA was performed on the mean number of dwells to find the target per 

block. Block, and the context-type x block interaction, violated sphericity, thus the 

Greenhouse-Geisser correction was used (see Table A8).  

The main effect of context-type was not significant [F(1, 33) = 3.18, p = 0.083, NS]. 

There was a main effect of block [F(8.29, 294.67) = 24.03, p < 0.001], where the mean 

number of dwells to find the target was reduced across blocks (MBlock-1 = 3.97; MBlock-20 

= 2.77) but there was not a main effect of task-type [F(1, 33) = 1.392, p > 0.24, NS]. 

There was not a significant context-type x task-type interaction [F(1, 33) = 0.24, p > 

0.62, NS], nor was there a significant block x task-type interaction [F(8.29, 294.67) = 

0.82, p > 0.59, NS], nor was there a significant context-type x block interaction [F(10.79, 

355.99) = 1.35, p = 0.20, NS. The main effect of block supports FAST’s first criterion of 

visual scan refinement: dwell reduction across blocks of trials.  

More support for the first criterion comes from re-dwells, re-encoding previously 

encoded information within the same visual scan. If visual scans are being refined, re-

dwells should be reduced across blocks. A 2(task-type) x [2(context-type) x 20(block)] 

mixed ANOVA was performed on the proportion of stimulus items (distractors or 

targets) assigned to more than one dwell, per trial (see Table A9). Only dwells assigned 

to display items were used. Block and the context-type x block interaction violated 

sphericity, thus the Greenhouse-Geisser correction was used.  

There was not a main effect of context-type [F(1,33) = 0.33, p > 0.56, NS], nor was 

there a main effect of task-type [F(1,33) = 1.39, p > 0.24, NS]. Importantly, there was a 

main effect of block [F(7.48, 246.66) = 2.18, p = 0.033], where re-dwells were 

significantly reduced across blocks (MBlock-1 = 0.08; MBlock-20 = 0.03). There was not a 

significant context-type x block interaction [F(10.79, 355.99) = 1.05, p > 0.39, NS]. The 

main effect of block on re-dwells provides further support for FAST’s first criterion of 

visual scan refinement. 

2.1.2.5.2.2 Criteria 2 & 3: Scan Pattern Similarity Increases Independent of Dwell 
Reduction & Patterns from Repeating Contexts Increase at a Faster 
Rate than Patterns from Unique Contexts 

Scan pattern analyses were conducted to determine if FAST criteria 2 and 3 were present 

in experiment 1. According to FAST, scan patterns will repeat on repeating contexts, and 
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will increase in similarity across repeated searches through repeating and unique 

contexts independent of the number of saccades/dwells comprising scans (Criterion-2), 

and scan patterns from repeating contexts will increase in similarity at a greater rate than 

scan patterns from unique contexts (Criterion-3). The NSI metric, described above, was 

used for computing similarity. If the second criterion is present, then there should be a 

significant main effect of epoch on NSIs. If the third criterion is present, then there 

should be a significant context-type x epoch interaction where repeating contexts 

increase in similarity at a faster rate across epochs than unique contexts.  

To determine if there were differences in NSIs between repeating and unique 

contexts across epochs, a 2(task-type) x [2(context-type) x 4(epoch)] mixed ANOVA 

was performed on all mean NSIs (see Table A10). After removing outliers, there were 

18 fixed-view participants and 17 free-view participants. Only dwells that were assigned 

a display item were used in the NSI calculation. Epoch violated the sphericity 

assumption, and any results reported that are associated with epoch use the Greenhouse-

Geisser correction.  

There was a main effect of context-type [F(1, 33) = 111.73; p < 0.001] where 

repeating contexts (MRepeating = 0.66) were significantly more similar than unique 

contexts (MUnique = 0.59). There was a main effect of epoch [F(2.08, 68.75) = 54.75; p < 

0.001] demonstrating an increase of similarity across epochs. There was not a significant 

context-type x epoch interaction [F(3, 99) = 1.89; p = 0.137, NS] (see Figure 7).  

The above analyses did not reveal evidence supporting FAST’s 3rd criteria: scan 

patterns from repeating contexts did not increase at a faster rate than patterns from 

unique contexts. Indeed, post-hoc analyses using the Bonferonni correction revealed that 

there were significant differences in NSIs between repeating and unique contexts in the 

first epoch (p < 0.001). Perhaps a very fast increase in similarity occurred in the first 

epoch. A new analysis was performed to determine if aggregating data into epochs 

washed out the interaction. The new analysis is a step-wise similarity comparison 

between subsequent views of contexts. For example, the first scan pattern (S1) from a 

repeating context was compared to the second scan pattern (S2) from the same repeating 

context (S1vS2). Then, S2 was compared to the third scan pattern (S3) from the same 

repeating context. The first six views were compared for all repeating contexts. The 
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same was done for unique contexts with the same target location. In total, there were 5 

step-wise comparisons for both types of contexts (i.e., S1vS2, S2vS3, S3vS4, S4vS5, 

S5vS6). After computing step-wise NSIs, they were averaged across each context for 

repeating contexts and repeating target locations for unique contexts, providing average 

step-wise comparison NSIs for each comparison (e.g., S1vS2) for both context-types 

(i.e., repeating and unique). 

 

Figure 7. Experiment 1 scan pattern similarity results. Mean NSI as a function of epoch and context-

type (repeating, unique). Error bars represent 95% confidence intervals. 

To determine if there were differences in NSIs between repeating and unique 

contexts across step-wise comparisons, a 2(task-type) x [2(context-type) x 

5(comparison)] mixed ANOVA was performed on all mean step-wise NSIs (see Table 

A11). There was a significant main effect of context-type [F(1, 34) = 5.27; p = 0.028]. 

There was not a main effect of comparison [F(4, 34) = 0.17; p > 0.95], nor was there a 

main effect of task-type [F(1, 34) = 0.5245; p > 0.47, NS]. There was not a context-type 

x comparison interaction [F(4, 136) = 0.41; p > 0.79, NS]. The results of the step-wise 

analysis did not reveal an interaction between context-types and step-wise comparisons. 
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2.1.2.6 Dwell Duration Analyses 

Although FAST makes no claims about dwell durations, they were analyzed for 

completeness. To determine if dwell durations changed as a function of context-type, 

task-type, or block, a 2(task-type) x [2(context-type) x 20(block)] mixed ANOVA was 

performed on all dwells (both assigned to display items, and those unassigned to display 

items were included) (see Table A12). Block and the context-type x block interaction 

violated sphericity, thus the Greenhouse-Geiser correction was used. There was not a 

significant main effect of context-type [F(1,33) = 1.85, p > 0.18, NS]. There was not a 

main effect of task-type [F(1,33) = 0.001, p > 0.975, NS]. There was a significant main 

effect of block [F(6.94, 228.9) = 4.89, p < 0.001], where dwell durations decreased from 

block 1 (238.32 ms) to block 20 (198.9 ms). There was not a significant context-type x 

block interaction [F(10.77, 355.48) = 1.02, p > 0.42, NS].  

2.1.3 Experiment 1 Conclusions 

With some statistical “effort,” a contextual cueing effect was found in the training phase 

of experiment 1. Although the effect was not present when aggregating trials into blocks, 

the effect was present when aggregating blocks of trials into epochs of trials, and only 

analyzing the first and last epoch of trials from the training phase, just as Chun and Jiang 

did in their experiment 5 (1998). 

Chun and Jiang (experiment 5, , 1998) presented evidence that eye movements were 

unnecessary for eliciting benefits after establishing a contextual cueing effect in the 

training phase–responses to repeating contexts were more accurate than responses to 

unique contexts during the testing phase (see Table 1). The current experiment was 

designed to duplicate these results in the minimum-control group, even though there 

were subtle differences between the methods used in the minimum-control group and 

those used by Chun and Jiang. Experiment 1 also increased eye movement controls in 

the maximum-control condition. One hypothesis from experiment 1 was that 

participants’ testing phase response accuracy for repeating contexts would be higher than 

unique contexts in the minimum-control condition, but would not differ in the 

maximum-control condition. There were no differences in accuracy between repeating 

and unique contexts in either the minimum- or maximum-control conditions or between 
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the two conditions (see Table 1). The results from the minimum-control group, where 

eye movements were more likely to occur, did not duplicate the results from Chung and 

Jiang (1998). This result does not support their claim that eye movements are 

unnecessary to benefit from an established cueing effect.  

Table 1. Accuracy results from Chun & Jiang (1998) and Experiment 1 testing phases. 

Experiment Context-type   Mean 
    Repeating Unique   
Chun & Jiang (1998) 0.785 0.735 0.760 
     
Experiment 1    
 Maximum-control 0.712 0.725 0.719 
 Minimum-control 0.755 0.741 0.748 

 

The results from the scan pattern analyses mostly support FAST. The first criterion 

of FAST, a reduction in the number of dwells to find the target across repeated searches, 

was supported in experiment 1. The second criterion of FAST, an increase in scan 

pattern similarity independent of the number of dwells to find the target across repeated 

searches, was also supported by experiment 1 results. The third hallmark of FAST, scan 

patterns from repeating contexts increase in similarity at a faster rate when compared to 

scan patterns from unique contexts, was not supported by experiment 1 results. 

Furthermore, the step-wise scan pattern comparison analyses show that scan patterns 

from repeating contexts are more similar than scan patterns from unique contexts after 

the first two views, as predicted by scanpath theory. 

One possible limitation of experiment 1 was the presentation of a visual mask after 

the stimulus presentation in the maximum-control condition. The mask was presented to 

help reduce movements of visual attention across a retinal afterimage. Laeng and 

Teodorescu (2002) demonstrated that scan patterns across an imagined stimulus aid in 

recalling information about the imagined stimulus, and the mask was used to impede this 

process in the testing phase of experiment 1. Chun and Jiang did not include masks 

because performance was “already quite low without further disruption of the 

presentations, suggesting that internal representations of the displays had rapidly faded.” 

(1998, p. 54).  



 

 52 

Indeed, it is unclear what role, if any, the mask played in hindering contextual 

cueing benefits in testing phase of the maximum-control group. Interestingly, accuracy 

levels from the minimum-control condition were not significantly different from levels 

from the maximum-control condition, and both were similar to the accuracy of responses 

to unique contexts from Chun and Jiang (1998). This similarity in response accuracy 

between the unique contexts in the minimum-control condition (where a mask was not 

used) and Chun and Jiang’s unique contexts suggest that differences between the two did 

not create large differences in response accuracy (see Table 1).  

Surprisingly, Chun and Jiang’s results were not duplicated in the minimum-control 

condition–there was not a repeating-context accuracy benefit even though neither of the 

two gaze controls from the maximum-control condition were used (i.e., dwell control 

crosshairs on all trial displays and the mask). This is inconsistent Chun and Jiang’s 

experiment 5 results used as evidence that eye movements are unnecessary for 

contextual cueing.  

To summarize, 2 out of 3 FAST criteria were supported in experiment 1. Although 

the 3rd criterion was not present in the results, experiment 1 provides initial evidence for 

FAST. A contextual cueing effect was found after some statistical “effort;” however, 

there were no differences between repeating or unique contexts during the testing phase. 

Contrary to Chun and Jiang’s (1998) results, results from experiment 1 do not support 

the hypothesis that eye movements are not needed for contextual cueing to occur. One 

possibility leading to no differences between repeating and unique contexts in the 

minimum-control condition is that the gaze-contingent dwell control crosshairs on the 

dwell control display acted as a subtle, yet reliable, dwell control beyond that used by 

Chun and Jiang (i.e., a solid black circle). Experiment 2 tests this hypothesis. 

2.2 Experiment 2 

In experiment 1, a contextual cueing effect was established during the training phase. 

During the experiment 1 testing phase, the proportion of correct trials did not differ 

between repeating and unique contexts in either the minimum- or maximum-control 

conditions.  
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Unfortunately, Chun and Jiang’s results were not duplicated in the experiment 1 

condition most similar to their experiment 5 methods, minimum-control. Gaze-

contingent dwell-control crosshairs may have acted as a subtle eye movement control 

beyond that used by Chun and Jiang (a static black circle). Experiment 2 manipulates 

crosshair gaze-contingency between groups of participants to determine if gaze-

contingent crosshairs on the dwell control display, only, provide enough eye movement 

control during stimulus presentation to eliminate testing-phase response accuracy 

benefits of repeating contexts reported by Chun and Jiang (1998). Experiment 2 provides 

further opportunity to test each of FAST’s criteria. 

2.2.1 Experiment 2 Methods 

2.2.1.1 Experiment 2 Task Overview 

The task was similar to experiment 1: participants were to locate a target (T) among 

distractors (L) and respond as quickly and accurately as possible. Participants performed 

768 trials, broken into 32 blocks, where each block was a set of 24 trials. As in 

experiment 1, each block contained 12 repeating and unique contexts. After completing 

the 20th block, all participants were transferred to a testing phase.  

2.2.1.1.1 Experiment 2 Design 

The design of experiment 2 more closely replicated Chun and Jiang’s (1998) experiment 

5 than did experiment 1, where Chun and Jiang attempted to rule out the contribution of 

eye movements to contextual cueing. Experiment 2 used a 2(gaze-contingency) x 

[2(context-type) x 32(block)] mixed design, with 2 between participant dwell control 

crosshairs conditions (gaze-contingent and static), 2 within-participant configuration-

types (repeating and unique) and 32 blocks. 

Participants were randomly assigned to either gaze-contingent crosshairs (GC) or 

static crosshairs (STC). All participants’ completed 20 blocks of 480 trials in the training 

phase (20 blocks of 24 trials – 12 repeating and 12 unique contexts per block). The 

training phase was the same as the training phase from experiment 1. First, a participant 

initially fixated crosshairs (+) on the dwell control display to ensure that all participants 

started search from the display center on all trials. The crosshair’s color were gaze-
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contingent in the GC group, but were constantly green in the STC group. After 600 

milliseconds, the stimulus display appeared (regardless if participants’ gaze was on the 

crosshairs) and the participant completed the trial by finding and responding to the 

target’s (T) orientation (right or left). Responses were captured using a Cedrus© 

response box (see Figure 5). After participants’ response, accuracy feedback was 

provided and lasted for 1 second. Participants took a 10 second break after each block of 

24 trials. After the training phase, participants’ completed the testing phase.  

During the testing phase, all participants were instructed to dwell on ‘+’ at the 

center of the dwell control display. In the STC group, the crosshairs were always green. 

However, in the GC group, if participants’ gaze deviated from the crosshairs, they 

changed from green to red. Once gaze returned to the crosshairs, they changed back to 

green. Gaze contingency was used to provide real-time feedback that participants needed 

to fixate the crosshairs when their gaze moved from the crosshairs. The gaze-contingent 

crosshairs were only present on the dwell-control display. After the 200 ms stimulus 

presentation, a blank display appeared. Participants were instructed to respond to the 

direction the target was facing as accurately as possible. Indeed, accuracy was stressed. 

Once a participant responded, accuracy feedback was provided and lasted for 1 second.  

The only difference between the GC and STC groups was that the STC groups’ 

crosshairs on the dwell control display remained green whether participants’ gaze was 

on the crosshairs or away from them. The STC group is closest to the method used in 

Chun and Jiang’s (1998) experiment 5, where the STC group has static green crosshairs 

and Chun and Jiang used a static black dot. 

2.2.1.2 Experiment 2 Apparatus 

2.2.1.2.1 Task Environment 

The task environment was identical to experiment 1, with the changes presented above.  

2.2.1.2.2 Eye Tracker 

The same eye tracker used in experiment 1 was used in experiment 2. 
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2.2.1.3 Experiment 2 Participants 

A total of 40 students from Rensselaer Polytechnic Institute participated in the 

experiment. A total of 1 hour of experiment credit was provided as compensation to all 

who completed the task. 

2.2.1.4 Experiment 2 Procedure 

After signing an informed consent form, each participant was randomly assigned to a 

gaze-contingency group. Next, each participant was given the appropriate task 

instructions. Following instructions, each participant was calibrated to the eye tracker. 

Next, participants completed 20 blocks (480 trials) of the training phase. Participants 

took a mandatory 10-second break after each block of 24 trials, as in Chun and Jiang 

(1998) experiment 5. After completing the training phase, each participant was presented 

with testing phase instructions and completed 2 blocks (48 trials) of unique contexts for 

the testing-practice phase. After the testing-practice phase, each participant began the 

final 10 blocks (240 trials) of the experiment in the testing phase. 

2.2.2 Experiment 2 Results 

First, results will be presented on gaze position control at the onset of the stimulus (i.e., 

context). Second, accuracy and response times are reported for the training phase, 

followed by gaze position control, response time, and accuracy analyses for the testing 

phase. Finally, scan pattern analyses are presented. The 48 speeded-response practice 

trials were excluded from all analyses. 

2.2.2.1 Experiment 2 Training Phase 

Gaze control, accuracy and response time analyses from the training phase are reported 

in the following sections. 

2.2.2.1.1 Experiment 2 Training Phase: Gaze Control 

A 2(gaze-contingency) x [2(context-type) x 20(block)] mixed ANOVA was conducted 

to determine if there were systematic differences in the ability to fixate crosshairs on the 

dwell control display (gaze control) during the training phase that are attributable to the 

independent variables used in experiment 2. The dependent variable was the mean 
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proportion of trials that resulted in the crosshairs being dwelled at the time of stimulus 

presentation, per block. After removing outliers, there were 19 participants in the STC 

group and 18 participants in the GC group. Block, and the context-type x block 

interaction, violated sphericity, and the Greenhouse-Geisser correction was used.  

There was not a main effect of context-type [F(1,35) = 0.32; p > 0.57, NS)] 

indicating no difference in gaze control between repeating and unique contexts. There 

was not a significant main effect of block [F(5.25,183.86) = 0.99, p > 0.42, NS], nor was 

there a main effect of task-type (GC, STC) [F(1,35) = 0.041; p = 0.84, NS]. Context-type 

did not interact with block [F(9.05, 316.58) = 0.99, p > 0.44, NS]. (see Table B1). No 

effects were significant indicating that crosshair gaze contingency did not affect gaze 

control. The mean proportion of trials where participants were staring at the crosshairs 

when a stimulus appeared was high for both groups: MSTC = MGC = 0.95. 

2.2.2.1.2 Experiment 2 Training Phase: Trial Accuracy 

A 2(gaze-contingency) x [2(context-type) x 20(block)] mixed ANOVA was conducted 

to determine if there were systematic differences in response accuracy during the 

training phase that are attributable to the independent variables used in experiment 2. 

The dependent variable was the proportion of correct trials, per block. After removing 

outliers, there were 19 participants in the STC group and 20 participants in the GC 

group. Block, and the context-type x block interaction, violated sphericity, and the 

Greenhouse-Geisser correction was used. 

There was not a significant main effect of context-type [F(1,37) < 0.001; p > 0.99, 

NS)] indicating no difference in response accuracy between repeating and unique 

contexts. There was not a significant main effect of block [F(10.52,389.29) = 1.21, p > 

0.28, NS], nor was there a main effect of task-type (GC, STC) [F(1,37) = 0.50; p > 0.48, 

NS]. Task-type did not interact with block [F(10.52,389.29)  = 1.44; p > 0.15, NS)] or 

context-type [F(1,37) < 0.02; p > 0.89, NS)]. Context-type did not interact with block 

[F(10.9, 403.19) = 0.69, p > 0.73, NS] (see Table B2). No effects were significant, 

indicating that, regardless of their gaze contingency, dwell control crosshairs did not 

affect response accuracy The mean proportion of correct responses was high for both 

groups: MSTC = MGC = 0.98. 
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2.2.2.1.3 Experiment 2 Training Phase: Response Times 

Experiment 1, and previous research (Chun & Jiang, 1998, experiment 5) has 

demonstrated that contextual cueing can occur within 480 trials. To determine if 

contextual cueing occurred within the training phase of experiment 2, a 2(gaze-

contingency) x [2(context-type) x 20(block)] mixed ANOVA was conducted on 

response times. After removing outliers, there were 19 participants in the STC group and 

18 participants in the GC group. Block, and the context-type x block interaction, violated 

sphericity, and the Greenhouse-Geisser correction was used. 

There was a significant main-effect of block [F(7.31,255.7) = 25.92; p < 0.001), 

where response times were gradually reduced from a mean of 1287.2 ms in block 1 to a 

mean of 943.6 ms in block 20. There was not a main effect of context-type [F(1,35) = 

0.12; p > 0.73, NS)] or of task-type [F(1,35) = 2.04; p > 0.16, NS)]. The context-type x 

block interaction was not significant [F(9.9,346.61) = 0.57; p > 0.83, NS)] (see Table 

B3).  

The contextual cueing effect did not occur in experiment 2. As in experiment 1, a 

2(task-type) x [2(context-type) x 2(epoch)] mixed ANOVA was performed on response 

times from correct trials to determine if the effect was “hiding” as in experiment 1. The 

same participants removed from the response time analysis above were removed from 

the current analysis.  

There was a significant main-effect of epoch [F(1, 35) = 109.59, p < 0.001] where 

response times in epoch 1 (M = 1299.6) were significantly slower than response times in 

epoch 4 (M = 1132.4). There was not a main effect of context-type [F(1,35) < 0.01; p > 

0.76, NS)] or of task-type [F(1,35) = 1.79; p > 0.18, NS)]. There was not a context-type x 

epoch interaction [F(1, 35) = 1.33; p > 0.26, NS)]. These results show, without doubt, 

that contextual cueing did not occur during the training phase of experiment 3 (see Table 

B4). 

2.2.2.2 Experiment 2 Training Phase Results Summary 

Although contextual cueing occurred in experiment 1, experiment 2 participants failed to 

establish the effect during the training phase. It is unclear why contextual cueing did not 

occur; however, the absence of the effect provides an opportunity to test for differences 
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in scan patterns between repeating and unique contexts when cueing does not occur. 

Before reporting results from scan pattern analyses, testing phase results will be 

reported. Because there was not a contextual cueing effect in the training phase, there 

should be no accuracy benefit for repeating contexts in the testing phase. Indeed, the 

accuracy results from both contexts in both groups should be equivalent to experiment 1 

results and accuracy results from unique contexts in Chun and Jiang (1998, experiment 

5). 

2.2.2.3 Experiment 2 Testing Phase 

Gaze control, response time, and accuracy analyses of testing phase data are reported in 

the following sections. 

2.2.2.3.1 Experiment 2 Testing Phase: Gaze Control 

A 2(gaze-contingency) x [2(context-type) x 10(block)] mixed ANOVA was conducted 

to determine if there were systematic differences in the ability to fixate crosshairs on the 

dwell control display (gaze control) during the testing phase that are attributable to the 

independent variables used in experiment 2. The dependent variable was the mean 

proportion of trials that resulted in the crosshairs being dwelled at the time of stimulus 

presentation, per block. After removing outliers, there were 18 participants in the STC 

group and 16 participants in the GC group. Block, and the context-type x block 

interaction, violated sphericity, and the Greenhouse-Geisser correction was used.  

There was not a main effect of context-type [F(1,32) < 0.01; p > 0.95, NS)] 

indicating no difference in gaze control between repeating and unique contexts. There 

was a significant main effect of block [F(5.96,190.65) = 2.24, p = 0.041], where gaze 

control fluctuated between blocks, and did not follow any particular trend or fall below 

0.985 on any block (see Figure 8). There was not a main effect of task-type (GC, STC) 

[F(1,32) < 0.01; p > 0.95, p = 0.84, NS]. Context-type did not interact with block 

[F(5.57, 178.26) = 0.72, p > 0.62, NS] (see Table B5). The mean proportion of trials 

across blocks where participants dwelled the control crosshairs at the point a stimulus 

appeared was high for both groups: MSTC = MGC = 0.995. 
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Figure 8. Experiment 2 testing-phase gaze-control as a function of block. Error bars are 95% 

confidence intervals. 

2.2.2.3.2 Experiment 2 Testing Phase: Response Times 

Because there was no difference between GC and STC groups on gaze controls when the 

stimulus was presented, all correct trials from the both conditions were included in the 

following analyses. After removing outliers, there were 18 participants in GC and 20 

participants in STC. Block and the context-type x block interaction violated sphericity, 

thus the Greenhouse-Geiser correction was used. 

A 2(task-type) x [2(context-type) x 10(block)] mixed ANOVA was conducted to 

determine if there were systematic differences in response times during the testing phase 

(see Table B6). There was not a main effect of context-type [F(1, 36) = 0.03, p > 0.85, 

NS] nor was there a main effect of task-type [F(1, 36) = 0.02, p > 0.88, NS]. There was a 

main effect of block [F(5.33, 191.8) = 5.87, p < 0.001], where mean response times from 

the first block of testing was significantly slower (Mblock-21 = 888 ms) when compared to 

the last block (Mblock-30 = 777 ms). There was not a significant context-type x block 

interaction [F(6.19, 222.66) = 1.32, p > 0.64, NS]. 
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2.2.2.3.3 Experiment 2 Testing Phase: Trial Accuracy 

As in experiment 1, the dependent variable of interest is the proportion of correct 

responses; consequently, correct and incorrect trials were included. All trials from the 

minimum-control group were included in analyses. After removing outliers, there were 

18 participants in GC and 20 participants in STC. 

A 2(task-type) x [2(context-type) x 10(block)] mixed ANOVA was performed on 

the proportion of correct trials (see Table B7). There was not a main effect of context-

type [F(1, 36) = 0.065, p > 0.80, NS]. There was a significant context-type x block 

interaction [F(9, 324) = 2.26, p = 0.018], where accuracy fluctuated across blocks, and 

did not follow an interpretable trend (see Figure 9).  

 

 

Figure 9. Response accuracy as a function of block in the experiment 2 testing phase. Error bars 

represent 95% confidence intervals. 

2.2.2.4 Experiment 2 Testing Phase Results Summary 

There are two key results from experiment 2. First, cueing was not established in the 

training phase as it was in experiment 1. Consequently, we did not duplicate Chun and 

Jiang’s accuracy results in the testing phase of our NGC condition: repeating contexts 

were no more likely to result in a correct response than were unique contexts.  
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Table 2. Accuracy results from Chun & Jiang (1998) and experiment 1 and 2 testing phases. 

Experiment Context-type   Mean 
    Repeating Unique   
Chun & Jiang (1998) 0.785 0.735 0.760 
     
Experiment 1    
 Maximum-control 0.712 0.725 0.719 
 Minimum-control 0.755 0.741 0.748 
     
Experiment 2    
 Gaze contingent crosshairs 0.757 0.758 0.758 
 Static crosshairs 0.717 0.722 0.720 

 

2.2.2.5 Experiment 2 Scan Pattern Analyses 

To determine if visual scans were refined across repeated searches through repeating 

contexts, NSIs were computed for each type of context for each participant. There were 

20 analyzable blocks of 24 trials (4 epochs) in the training phase of experiment 2, and 

the analyses are directed toward determining if all FAST criteria are supported in 

experiment 2. 

The 3 criteria of FAST lead to 3 specific predictions within the contextual cueing 

paradigm: (1) scan patterns will repeat and increase in similarity across repeated 

searches through repeating and unique contexts independent of the number of 

saccades/dwells comprising scans, (2) the number of saccades to find the target will be 

reduced across repeating and unique contexts, and (3) scan patterns from repeating 

contexts will increase in similarity at a greater rate than scan patterns from unique 

contexts. The current section presents scan pattern analyses to test for scanning 

refinement during the training phase of experiment 2.  

2.2.2.5.1 Criterion 1: Dwell Reduction across Repeated Search 

As in experiment 1, ProtoMatch software was used to calculate dwells, assign stimulus 

items to dwells, and calculate dependent measures associated with dwells and associated 

objects. If FAST’s second criterion of scan refinement occurred in experiment 1, the 

number of dwells to find a target should be reduced across blocks of trials in the training 



 

 62 

phase. A 2(task-type) x [2(context-type) x 20(block)] mixed ANOVA was performed on 

all dwells (dwells paired and unpaired with display items were included). After 

removing outliers, there were 18 GC participants and 19 STC participants. Block and the 

context-type x block interaction violated sphericity, thus the Greenhouse-Geisser 

correction was used (see Table B8).  

There was not a main effect of context-type [F(1, 35) = 0.485, p > 0.49, NS]. There 

was not a main effect of transfer-task where GC and STC were equivalent (MGC = 2.89; 

MSTC = 2.83) [F(1, 35) = 0.14, p > 0.71, NS]. Importantly, there was a main effect of 

block [F(4.39,153.76) = 12.00, p < 0.001] demonstrating that the number of dwells 

reduced across the 20 blocks of the training phase. There was not a significant context-

type by block interaction [F(9.67, 348.9) = 0.99, p > 0.45, NS].  

Further support for the second criterion can come from re-dwells. If visual scans are 

being refined, re-dwells should be reduced across blocks. A 2(task-type) x [2(context-

type) x 20(block)] mixed ANOVA was performed on the proportion of stimulus items 

(distractors or targets) assigned to more than one dwell, per trial, or re-dwells (see Table 

B9). Only dwells assigned to display items were used. Block and the context-type x 

block interaction violated sphericity, thus the Greenhouse-Geisser correction was used. 

There was not a significant main effect of context-type [F(1,35) = 1.06, p > 0.31, 

NS]. There was not a significant main effect of task-type [F(1,35) = 0.27, p > 0.60, NS]. 

There was a significant main effect of block [F(6.93,242.38) = 4.52, p < 0.001]. There 

was not a significant context-type x block interaction [F(8.81,308.5) = 0.55, p > 0.83, 

NS].  

2.2.2.5.2 Criteria 2 & 3: Scan Pattern Similarity Increases Independent of Dwell 
Reduction & Patterns from Repeating Contexts Increase at a Faster Rate 
than Patterns from Unique Contexts 

Visual scan analyses were conducted to determine if FAST criteria 2 and 3 were present 

in experiment 2. The NSI metric, used in experiment 1, was used for computing 

similarity. Support for the second criterion would come from a significant main effect of 

epoch on NSIs. Support for the third criterion would come from a significant context-

type x epoch interaction where repeating contexts increase in similarity at a faster rate 
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across epochs than unique contexts. Only dwells that were assigned a stimulus display 

item were used in the NSI calculation. 

To determine if there were differences in NSIs between repeating and unique 

contexts across epochs, a 2(task-type) x [2(context-type) x 4(epoch)] mixed ANOVA 

was performed on all mean NSIs (see Table B10). After removing outliers, there were 18 

GC participants and 19 STC participants. Epoch violated the sphericity assumption, and 

any results reported that are associated with epoch use the Greenhouse-Geisser 

correction.  

There was a main effect of context-type [F(1, 35) = 106.08; p < 0.001] where 

repeating contexts (MRepeating = 0.67) were significantly more similar than unique 

contexts (MUnique = 0.60). There was a main effect of epoch [F(2.18, 69.79) = 36.13; p < 

0.001] demonstrating an increase of similarity across epochs. There was not a significant 

main effect of task-type [F(1, 33) = 1.16; p > 0.21, NS]. There was not a significant 

context-type x epoch interaction [F(3, 99) = 0.78; p > 0.49, NS] (see Figure 10). 

 

Figure 10. Experiment 2 scan pattern similarity results. Error bars represent 95% confidence 

intervals. 

The above analyses did not reveal evidence supporting FAST’s 3rd criteria: patterns 

from repeating contexts did not increase at a faster rate than scan patterns from unique 

contexts. Indeed, post-hoc analyses using the Bonferonni correction revealed that there 

were significant differences in NSIs in the first epoch from repeating and unique 
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contexts (p < 0.001). Perhaps a rapid increase in similarity occurred in the first epoch. 

The same step-wise similarity analysis performed on experiment 1 data was performed 

on training phase eye data from experiment 2. As a reminder, the first scan pattern (S1) 

from a repeating context was compared to the second scan pattern (S2) from the same 

repeating context (S1vS2). Then, S2 was compared to the third scan pattern (S3) from 

the same repeating context. The first six views were compared for all repeating contexts. 

The same was done for unique contexts with the same target location. In total, there were 

5 step-wise comparisons for both types of contexts (i.e., S1vS2, S2vS3, S3vS4, S4vS5, 

S5vS6). After computing step-wise NSIs, they were averaged across each context for 

repeating contexts and repeating target locations for unique contexts, providing average 

step-wise comparison NSIs for each comparison (e.g., S1vS2) for both context-types 

(i.e., repeating and unique). 

To determine if there were differences in NSIs between repeating and unique 

contexts across step-wise comparisons, a 2(task-type) x [2(context-type) x 

5(comparison)] mixed ANOVA was performed on all mean step-wise NSIs (see Table 

B11). There was a significant main effect of context-type [F(1, 35) = 4.69; p = 0.037]. 

There was not a main effect of comparison [F(3, 105.14) = 0.22; p > 0.88], nor was there 

a main effect of task-type [F(1, 35) = 0.64; p > 0.43, NS]. There was not a reliable 

context-type x comparison interaction [F(4, 140) = 0.20; p > 0.93, NS]. The results of the 

step-wise analysis did not reveal an interaction between context-types and number of 

times a context was viewed.  

2.2.2.6 Dwell Duration Analyses 

Although FAST does not make claims about dwell durations, they were analyzed for 

completeness. To determine if dwell durations changed as a function of context-type, 

task-type, or block, a 2(task-type) x [2(context-type) x 20(block)] mixed ANOVA was 

performed on all dwells (see Table B12). Block violated the sphericity assumption, thus 

the Greenhouse-Geisser correction was used. There was not a significant main effect of 

context-type [F(1,35) = 0.14, p > 0.71, NS]. There was not a main effect of task-type 

[F(1,35) < 0.001, p > 0.98, NS]. There was a significant main effect of block [F(7.37, 

257.95) = 3.06, p < 0.004], where dwell durations decreased from block 1 (217.52 ms) to 
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block 20 (190.9 ms). There was not a significant context-type x block interaction [F(19, 

665) = 0.63, p > 0.88, NS]. 

2.2.3 Experiment 2 Conclusions 

Repeating scan patterns are adopted in free-view paradigms. Experiment 1 showed that 

repeating scan patterns are also adopted during visual search, and experiment 2 

duplicated the experiment 1 results. Contextual cueing is an example of adaptive 

behavior, where scene context is implicitly learned and used advantageously, resulting in 

faster response times in repeating contexts when compared to unique contexts. The 

discoverers and leading proponents of contextual cueing, M. Chun and Y. Jiang, assert 

that contextual cueing does not require eye movements. FAST maintains that scan 

patterns are repeated and refined, leading to improvements in tasks similar to the 

contextual cueing effect, and that eye movements are more than epiphenomenal. 

Experiments 1 & 2 were designed to challenge the assertion that contextual cueing does 

not require eye movements, and used an experiment method similar to the one used to 

demonstrate that eye movements are not linked to cueing effects (Chun & Jiang, 1998).  

In experiment 1, participants exhibited contextual cueing by the end of the training 

phase; however, testing phase accuracy results did not duplicate the results reported by 

Chun and Jiang (1998). In experiment 2, participants did not exhibit contextual cueing 

effects by the end of the training phase. There was no difference between the task 

environments used for the gaze-contingent crosshairs condition (GC) of experiment 2 

and the minimum-control condition from experiment 1. The only difference between the 

static crosshairs condition (STC) of experiment 2 and the minimum-control condition 

from experiment 1 was that the crosshairs were gaze contingent in minimum-control but 

not in STC. Consequently, it is unclear why contextual cueing would occur in 

experiment 1 and not occur in experiment 2. Nonetheless, the experiment 2 testing-phase 

was analyzed and the results duplicated the experiment 1 results. Interestingly and 

surprisingly, accuracy for repeating contexts never reached the level reported by Chun 

and Jiang (see Table 9). Furthermore, accuracy means from repeating and unique 

contexts in both conditions of experiment 2 were equivalent to the minimum-control 

condition from experiment 1 and greater than the results from the maximum-control 
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condition. Based on the results from experiments 1 and 2, there is support that eye 

movements may be linked to contextual cueing. 

Experiment 1 scan pattern analyses revealed that scan patterns from repeating 

contexts increase in similarity with experience, and that the number of dwells to find a 

target are reduced with experience, supporting FAST’s first and second criteria, 

respectively. Scan patterns from experiment 2 qualitatively duplicated experiment 1 

results. Unfortunately, the third hallmark of refinement, similarity of visual scans from 

repeating contexts increase at a greater rate with experience than scan patterns from 

unique contexts, was not present in either experiment, even after performing the step-

wise scan pattern comparison analyses. However, the step-wise comparison analyses 

show that scan patterns are more similar from repeating contexts than scan patterns from 

unique contexts after the first two views, providing support for scanpath theory. 

Although it would be ignorant to conclude that contextual cueing comes and goes 

with the tides based only on experiments 1 and 2, and Chun and Jiang (1998), it is 

possible that response time is not quite sensitive enough to reliably detect contextual 

cueing. An alternative dependent variable is the NSI metric used for determining scan 

pattern similarity. Indeed, experiment 2 provided an opportunity to determine if FAST’s 

criteria were present when the contextual cueing effect was not captured using response 

times. The results from experiments 1 and 2 are interpreted as demonstrating the link 

between eye movements and contextual cueing. Moreover, the experiment results 

provide initial support for FAST. Although results from experiments 1 and 2 are mixed, 

2 of FAST’s 3 criteria were met in both experiments. It was unfortunate that contextual 

cueing was not established in experiment 2. To help ensure the occurrence of contextual 

cueing in experiment 3, the sizes of the stimulus items (targets and distractors) were 

reduced to limit the usefulness of peripheral vision during search. The logic here is that 

by limiting the ability to use peripheral vision, costs of search are increased due to the 

inability to encode information peripherally, creating the need to affix gaze on more 

display items to encode them and determine if they are the target. Not only might this 

help establish contextual cueing effects, it will also facilitate the visual scan analyses. 

Finally, experiment 3 contains a second task in the environment to determine the effect 
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high load has on visual scans and contextual cueing, and is presented in the following 

section. 

2.3 Experiment 3 

Scan patterns repeat during free-view tasks. FAST maintains that scan patterns repeat 

and are refined in goal-oriented tasks. Experiments 1 and 2 demonstrate that scan 

patterns repeat, and are systematically refined with experience in goal-oriented tasks. 

Experiment 3 was conducted to further examine the role of repeating scan patterns in 

visual search using the contextual cueing paradigm. The experiment was also conducted 

to determine how increased cognitive load affects scanning and contextual cueing 

processes. Consequently, the method used in experiment 3 differed significantly from 

experiments 1 and 2. 

2.3.1 Experiment 3 Methods 

Experiment 3 differs from experiments 1 and 2 in four important ways. First, rather than 

having training and testing phases, experiment 3 does not have a testing phase. 

Contextual cueing was demonstrated in only one of the first two experiments, and that 

was with some ‘statistical effort.’ Experiment 3 extends the number of blocks from 20 to 

30 (adding 240 trials) to help establish a contextual cueing effect, as measured by 

response time. The extra trials provided 10 more views of each repeating context 

compared experiments 1 and 2. If many views of repeating contexts are important for 

establishing contextual cueing, then experiment 3 provides more opportunity for 

contextual cueing to be established by the end of the experiment. 

Second, the size of each stimulus item (distractors and targets) was made smaller 

than those used in experiments 1 and 2. The size reduction was to better test for the 

presence/absence of FAST’s criteria. The size of stimulus items in experiments 1 and 2 

were 2° of visual angle at a viewing distance of ≈ 22 in, and a minimum of 3° separated 

each item to ensure that all 12 items fit on the display and not overlap. Consequently, 

stimulus items in the first two experiments could be within 1° angle from each other. 

This small minimum distance enabled participants to encode multiple items without 

gazing at a single item. Reducing the stimulus item size in experiment 3 to 0.5° of visual 
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angle makes it more difficult to encode multiple items with one dwell. Consequently, 

more stimulus items will be assigned to dwells in experiment 3 enabling better estimates 

of scan pattern similarities than those from experiments 1 and 2. If reducing the stimulus 

item size increases difficulty in encoding multiple items, then experiment 3 should have 

more dwells and more re-dwells to find the target than experiments 1 and 2. 

Third, groups of participants searched through the same repeating contexts; 

whereas, in experiments 1 and 2, all repeating contexts were particular to individual 

participants. It is assumed in scanpath theory that repeating scan patterns are 

idiosyncratic between people, even when different people scan the same stimulus. Using 

the same repeating contexts across participants in experiment 3 helped to determine the 

similarity of scan patterns between participants on the same context. If different 

individuals’ scan patterns from repeating contexts are truly idiosyncratic, then they 

should have NSIs approximately equal to scan patterns from unique contexts.  

Fourth, cognitive load was manipulated between participants as a completely 

crossed cognitive load transfer task. Thus, there are 4 between participant groups that 

experience differences in cognitive load across 2 phases of the experiment. Participants 

will 1) start in a single-task phase and transfer to dual-task phase (SD), 2) start in a dual-

task phase and transfer to single-task phase (DS), 3) start in a single-task phase and 

remain in single-task phase (SS), or 4) start in a dual-task phase and remain in the dual-

task phase (DD). The SS and DD groups provide baselines of constant high and low load 

on contextual cueing and scan patterns. 

Cognitive load was manipulated between groups to determine how periods of high 

cognitive load affect scan patterns and contextual cueing. If contextual cueing and 

repeating scan patterns are implicitly learned, then there should be little effect of 

cognitive load on trial response times or NSIs. Furthermore, effects of transferring from 

low-load to high-load on scan patterns and contextual cueing can be determined after 

repeating scan patterns have been adopted and while contextual cueing is becoming 

established. If contextual cueing and repeating scan patterns are implicitly executed, then 

there should be little effect of cognitive load on trial response times or NSIs when 

transferring from low to high cognitive load.  
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2.3.1.1 Experiment 3 Task Overview 

Participants’ were to locate a target (T) among distractors (L) and respond as quickly 

and accurately as possible. On each trial, there were 12 items on the screen, 11 

distractors and 1 target. Participants performed 720 trials, broken into 30 blocks, where 

each block is a set of 24 trials. Each block contained 12 unique contexts and 12 repeating 

contexts presented in random order from block to block. After completing the 15th block, 

all participants took a mandatory 5-minute break. After the break, participants 

transferred into a single- or dual-task phase and completed the final 15 blocks. 

2.3.1.1.1 Experiment 3 Design 

Experiment 3 used a 4(load-transfer) x 3 (configuration-group) x [2(context-type) x 

30(block)] mixed experimental design. There were four between-participant cognitive 

load transfer groups (SS, SD, DS, and DD) occurring across three configuration-groups 

that each searched through repeating and unique contexts across 30 blocks, where each 

block contained 24 trials (see Figure [E3-flow]).  

 

Figure 11. Experiment 3 flow. 

As in experiments 1 and 2, there are 2 types of contexts: repeating and unique. 

Within a block of 24 trials, all contexts differed. There were 12 contexts that were 
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repeated across 30 blocks (i.e., repeating contexts). The other 12 contexts within each 

block were random (i.e., unique contexts). Hence, participants searched through 360 

unique contexts and 12 repeating contexts 30 times, each.  

A goal of the current study was to determine if different people scan the same 

stimulus in a similar manner. Thus, the exact same repeating contexts and target 

locations were used across participants. In order to ensure that effects are not attributable 

to luckily using a certain context across all participants, 3 configuration-groups of 

repeating contexts using the same target locations were used between participants. 

Target locations were kept constant across repeating and unique contexts to rule out 

target location differences if there were any configuration group effects. 

Cognitive load was manipulated as a between-participant transfer task to uncover 

effects of increased load on scanning behavior. There were 4 transfer groups: single-

single (SS), dual-single (DS), single-dual (SD) and dual-dual (DD). The “single” label 

refers to the set of blocks when participants only performed the visual search task; the 

“dual” label refers to the set of blocks when participants performed the search task with 

an added auditory letter classification task. Consequently, the SS group was closest in 

similarity to the training phase of experiments 1 and 2, and the “classic” contextual 

cueing paradigm. The DS and SD groups were transfer groups, which transferred from a 

searching-only phase to a dual-task phase (searching and auditory tasks), or vice-versa. 

The SS and DD groups serve as baselines for determining transfer effects on all 

dependent measures (see Figure 11). 

The additional auditory task was a letter classification task. This task has been used 

to manipulate cognitive load in previous research (Myers & Gray, submitted). 

Participants were auditorally presented random letters of the alphabet with a four-second 

interstimulus-interval (ISI). Participants were to indicate whether the current letter (n) 

preceded or followed the prior letter (n-1) in the alphabet. Participants were instructed to 

respond as quickly and accurately as possible, and that if they failed to respond to the 

alphabet task within the allotted 4 s ISI, the response would be counted as incorrect. The 

task continued without interruption through all trials when a participant was completing 

dual-task blocks.  
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2.3.1.1.2 Experiment 3 Apparatus 

2.3.1.1.2.1 Experiment 3 Task Environment 

The task environment was built in-house using ANSI common Lisp in the LispWorks 

development environment. The task environment runs on Apple Macintosh OS 10.4.4. 

Each stimulus context contained 12 items, eleven “L” and one “T”. Items were 

oriented in either the 90° or 270° position. Participants responded to the direction of the 

“T” using a Cedrus® response pad by pressing right if the T’s top was on the right, and 

left if the top was on the left (see Figure 12). Contexts were presented on a 17” flat-panel 

display at a resolution of 1280 x 1024. Each item subtended approximately 0.5° of visual 

angle at a viewing distance of approximately 22 inches. The centers of all items were 

separated by a minimum of 3° of visual angle. Consequently, the minimum distance 

between items was 2.5° of visual angle. Due to the size, and the small minimum distance 

between each item on a trial, information cannot be easily encoded in peripheral vision. 

It is important to restate how unique and repeating contexts were created. First, an 

even number of different target locations was determined. Half of the target locations 

were for unique contexts, and half were for repeating contexts. (Target locations were 

used for all participants.) Distractor locations were then added to target locations for 

repeating contexts, under the condition that the added distractor locations did not come 

within a specified minimum item-to-item distance (3° of visual angle). Afterward, the 

same repeating contexts were used across the experiment. Consequently, when it is time 

to display one of the repeating contexts, a repeating context was randomly selected 

without replacement from the set of repeating contexts and displayed to the participant. 

Three groups of repeating contexts were used across all participants, and each group 

shared the same target locations. Three different sets of repeating contexts were created, 

called configuration-groups. Participants were then randomly assigned to a configuration 

group. Thus, within a configuration-group, each participant searched through the same 

repeating contexts. 

When it was time to display a unique context, one of the target locations set aside 

for unique contexts was randomly selected without replacement. Distractor locations 

were then added to the target location to create a unique context, under the condition that 

the items (distractors and targets) did not come within the specified minimum item-to-
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item distance. Once the sets of unique context target locations and repeating contexts 

were exhausted, a new block of trials began with the same unique context target 

locations and the same repeating contexts. Thus, within a configuration-group, each 

participant searched through the same repeating contexts and the same unique context 

target locations.  

 

Figure 12. Cedrus response pad configuration for experiment 3. 

All stimuli in the letter classification task were presented via Apple’s speech 

software, using its “Victoria” voice, throughout the experiment without interruption. 

Responses were made using a Cedrus® button box (see Figure 12). Three letters were 

excluded (E, V, W) due to discrimination difficulty. 

2.3.1.1.2.2 Experiment 3 Eye Tracker 

The same eye tracker used in experiments 1 and 2 was used in experiment 3. 

2.3.1.1.3 Experiment 3 Participants 

A total of 62 students from Rensselaer Polytechnic Institute participated in the 

experiment. A total of 2 hours of experiment credit was provided as compensation to all 

who completed the task. 

2.3.1.1.4 Experiment 3 Procedure 

After signing an informed consent form, each participant was randomly assigned to a 

cognitive load transfer group and configuration-group. Next, each participant was given 

the appropriate task instructions. Following instructions, each participant was calibrated 

to the eye tracker.  
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Next, the participant completed 15 blocks of trials. After completing the first 15 

blocks, each participant took a mandatory 5-minute break. After the break the participant 

began the final 15 blocks of the experiment in the appropriate transfer condition. After 

completing the final trial, the participant was debriefed and awarded compensation for 

their time. 

2.3.2 Experiment 3 Results 

First, results from the letter classification task are presented, followed by trial accuracy 

results. Next trial response time results are presented. Finally, scan pattern results are 

presented. The trial accuracy, response time, and scan pattern results begin with an 

omnibus analysis, and are then separated between workload and transfer results. The 

section ends with a summary of all results. 

2.3.2.1 Experiment 3 Letter Classification Task 

Three of the four transfer-load conditions had the letter classification task (DD, DS, and 

SD). First DD and DS will be compared across the first phase (blocks 1-15), followed by 

DD and SD across the second phase (blocks 16-30). Finally, DS is compared to SD to 

see if there are differences between the first phase and second phase from the two 

different conditions. 

A 2 (transfer-load) x 3 (configuration-group) x [2 (context-type) x 15 (block)] 

mixed ANOVA was conducted on the mean proportion of correct responses, per block, 

from the DD and DS groups. No outliers were removed. Block violated sphericity, and 

the Greenhouse-Geisser correction was used. The mean proportion of correct responses 

for DS was 0.81 and was 0.78 for DD. The main effect of block approached significance 

[F(7.92, 189.99) = 1.974, p = 0.052], where participants improved after the first block, 

and reached asymptote by the second block. No other effects were significant (see Table 

C1). 

A 2 (transfer-load) x 3 (configuration-group) x [2 (context-type) x 15 (block)] 

mixed ANOVA was conducted on the mean proportion of correct responses, per block, 

from the DD and SD groups. No outliers were removed. Block violated sphericity, and 

the Greenhouse-Geisser correction was used. The mean proportion of correct responses 
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for SD was 0.81 and was 0.78 for DD. The main effect of block reached was not 

significant [F(8.69, 191.96) = 1.03, p > 0.42]. No other effects were significant (see 

Table C2). 

A 2 (transfer-load) x 3 (configuration-group) x [2 (context-type) x 15 (block)] 

mixed ANOVA was conducted on the mean proportion of correct responses, per block, 

from the DS and SD groups for blocks 16-30. No outliers were removed. The mean 

proportion of correct responses for SD was 0.81 and was 0.81 for DS. The main effect of 

block reached significance [F(8.68, 208.36) = 2.12, p > 0.031], where participants 

improved after the first block, and reached asymptote by the second block. No other 

effects were significant (see Table C3). 

2.3.2.2 Experiment 3 Trial Accuracy Results 

A 4(transfer-load) x 3 (configuration-group) x [2(context-type) x 30(block)] mixed 

ANOVA was conducted to determine if there were systematic differences in trial 

accuracy attributable to the independent variables used in experiment 3. The dependent 

variable was the proportion of correct trials. After removing outliers, there were 12 SS 

participants, 13 SD participants, 15 DS participants and 14 DD participants. Block, and 

the context-type x block interaction, violated sphericity, and the Greenhouse-Geisser 

correction was used (see Table C4). 

 There was a significant main effect of context-type [F(1, 42) = 11.14, p = 0.002], 

where unique contexts resulted in a higher mean proportion of trial responses per block 

(MUnique = 0.976) than repeating contexts (MRepeating = 0.971). There was also a 

significant block x transfer-load interaction [F(87, 435.68) = 2.19, p < 0.001]. The 

results demonstrate differences in accuracy by context-type, where unique contexts are 

responded to more accurately than repeating contexts, though this difference (0.005) 

seems trivial. The block x transfer-load interaction demonstrates that different levels of 

load differentially affect trial accuracy with task experience. The next two sections 

address how workload and transferring from low-load to high-load (and vice-versa) 

affect trial accuracy.  
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2.3.2.2.1 Workload Results 

Participants performed either the searching and letter classification tasks, or just the 

searching task within the first phase of experiment 3. To determine how workload 

affected searching task response accuracy, a 2(load) x 3 (configuration-group) x 

[2(context-type) x 15(block)] mixed ANOVA was conducted on phase-1 data to 

determine if there were systematic differences in trial accuracy attributable to differences 

in workload. The dependent variable was the proportion of correct trials. After removing 

outliers, there were 26 participants in the dual-task group and 29 participants in the 

single-task group. Block, and the context-type x block interaction, violated sphericity, 

and the Greenhouse-Geisser correction was used (see Table C5). 

There was a main effect of context, [F(1, 49) = 4.26, p = 0.044], where unique 

contexts resulted in a higher mean proportion of correct responses per block (MUnique = 

0.976) than repeating contexts (MRepeating = 0.971). There was a main effect of block, 

[F(5.94, 291.27) = 4.25, p < 0.001],  where the first block had a lower mean proportion 

of trial responses (Mblock-1 = 0.962) than the 15th (Mblock-15 = 0.983) block. Finally, there 

was a main effect of load, [F(1, 49) = 15.03, p < 0.001], where the single task group 

(Msingle = 0.981) had a greater proportion of correct trials than the dual task group (Msingle 

= 0.957). Neither the context x load, or the block x load, or the context x block 

interactions were significant (p = 0.076, p = 0.071, and p = 0.916, respectively). No 

other effects were significant. 

2.3.2.2.2 Training and Transfer Results 

To determine how transferring from low-load to high-load conditions, and vice-versa, 

affect trial accuracy, 4 analyses were performed. The first two analyses are “training 

equivalency analyses” and were conducted to determine if performance in the same 

conditions of phase 1, were statistically indistinguishable (i.e., SS compared to SD, and 

DD compared to DS). Both SS and SD began the experiment in the single task condition, 

and DD and DS began the experiment in the dual-task condition. Ideally, performance 

from SS and SD, and from DD and DS, will not be different in phase 1. 

The last two analyses were performed to (1) determine what effects were present 

when participants transferred from low-load to high-load (i.e., phase-2 of SS compared 
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to phase-2 of SD) and (2) determine what effects were present when participants 

transferred from high- to low-load (i.e., phase-2 of DS compared to phase-2 of SS). If 

results from the first two analyses demonstrate that SS and SD and DD and DS were 

equivalent and that the second set of analyses demonstrate that SS and SD and DS and 

SS differ in the second half of the experiment (phase 2), then there is good evidence of 

load effects when transferring from low-load to high-load, and vice versa. 

2.3.2.2.2.1 Training Analyses 

To determine if SS and SD were equivalent, a 2(transfer-load) x 3 (configuration-group) 

x [2(context-type) x 15(block)] mixed ANOVA was conducted on phase-1 data. After 

removing outliers, there were 12 participants in the SS group and 15 participants in the 

SD group. Block, and the context-type x block interaction, violated sphericity, and the 

Greenhouse-Geisser correction was used. No effects were significant, showing that SS 

and SD were equivalent in phase-1 (see Table C6).  

To determine if DD and DS were equivalent, a 2(transfer-load) x 3 (configuration-

group) x [2(context-type) x 30(block)] mixed ANOVA was conducted. After removing 

outliers, there were 15 participants in the DS group and 14 participants in the DD group. 

Block  violated sphericity, and the Greenhouse-Geisser correction was used (see Table 

C7). There was a main effect of context [F(1, 23) = 7.198, p = 0.013], where repeating 

contexts resulted in a greater proportion of correct trials (MRepeating = 0.961) than unique 

contexts (MUnique = 0.953). There was also a significant block x configuration-group 

interaction [F(10.65, 122.42) = 1.95, p = 0.041], where configuration-group 1 (see 

Figure 13) did not improve across blocks at the same rate as the other two configuration-

groups. Importantly, there was not a main effect of transfer-load [F(1, 23) = 1.64, p > 

0.21], and transfer-load did not interact with context (p = 0.38), or with block (p = 

0.062), or with context x block (p = 0.092). No other effects were significant. The results 

demonstrate the equivalency of DS and DD in phase-1. 
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Figure 13. Configuration-group x block interaction on mean proportion of correct trials between 

dual-dual and dual-single within phase-1. Error bars represent 95% confidence intervals. 

2.3.2.2.2.2 Transfer Analyses 

To determine if SD and SS differed after being transferred to a dual task scenario or 

continuing with a single task scenario, a 2(transfer-load) x 3 (configuration-group) x 

[2(context-type) x 15(block)] mixed ANOVA was conducted. After removing outliers, 

there were 13 participants in the DS group and 13 participants in the DD group. Block, 

and the context-type x block interaction, violated sphericity, and the Greenhouse-Geisser 

correction was used (see Table C8). There was a context x configuration-group 

interaction [F(1, 20) = 5.53, p = 0.012], where configuration-group 1 did not result in as 

many accurate responses in the unique contexts as the repeating contexts, while the other 

2 configuration groups were equivalent across context-type (see Figure 14). Importantly, 

there was not a main effect of transfer-condition [F(1, 20) = 2.79, p >0.11, NS], 

demonstrating that transferring from a single-task to a dual-task scenario did not affect 

accuracy results between groups. No other effects were significant. 
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Figure 14. Configuration-group x context-type interaction on the mean proportion of correct trials 

between single-single and single-dual in phase-1. Error bars represent 95% confidence intervals. 

To determine if SS and DS differed after being transferred to a single task scenario 

from a dual task scenario or a single-task scenario, a 2(transfer-load) x 3(configuration-

group) x [2(context-type) x 30(block)] mixed ANOVA was conducted. After removing 

outliers, there were 13 participants in the DS group and 13 participants in the SS group. 

Block violated sphericity, and the Greenhouse-Geisser correction was used. Importantly, 

there was not a main effect of transfer-load [F(1, 22) = 1.75, p > 0.19, NS], nor did 

transfer load interact with any other independent variable. No other effects were 

significant (see Table C9).  

2.3.2.2.3 Experiment 3 Trial Accuracy Results Summary 

A high level of accuracy was maintained across experiment 3, never dropping below 

0.90 within a block. Accuracy was affected as a function of transfer-load condition, was 

improved across blocks, and unique contexts elicited more accurate responses than 

repeating contexts. Although increased task-load decreased accuracy, transferring from 

single-task to dual-task, or vice-versa, did not affect accuracy. Interestingly, 

configuration-group tended to interact with other independent variables (e.g., context-



 

 79 

type and block) in dual-task scenarios. It is unclear why increased cognitive load would 

affect different configuration-groups differently (see figures 13 and 14). 

2.3.2.3 Experiment 3 Response Time Results 

Response time results will be divided between the omnibus ANOVA, workload effects 

and transfer effects, just as the accuracy results presented above. A 4(transfer-load) x 3 

(configuration-group) x [2(context-type) x 30(block)] mixed ANOVA was conducted to 

determine if there were systematic differences in mean response times attributable to the 

independent variables used in experiment 3. After removing outliers, there were 13 SS 

participants, 14 SD participants, 16 DS participants and 13 DD participants. Block, and 

the context-type x block interaction, violated sphericity, and the Greenhouse-Geisser 

correction was used. There was a significant block x transfer-load interaction [F(11.38, 

166.45) = 5.498, p < 0.001], demonstrating that transfer-load conditions differentially 

affected response times across blocks. Importantly, neither the main effect of context 

[F(1, 44) = 0.56, p > 0.45, NS], nor the context x block interaction [F(2.48, 108.89) = 

2.35, p > 0.085],were significant. No other effects were significant (see Table C10). 

As in experiments 1 and 2, a contextual cueing effect was not established when 

analyzing the response times as a function of block. Different from experiments 1 and 2, 

it is possible that the context x block interaction was washed out by including the 

transfer groups SD and DS. Furthermore, experiment 1 produced a contextual cueing 

effect after aggregating response times into epochs and only including epochs 1 and 4 in 

the analyses. To determine if contextual cueing was absent from the omnibus F test by 

including the DS and SD transfer-load groups and not aggregating data into epochs, a 2 

(context-type) x 2 (epoch) repeated measures ANOVA was applied to response times 

from the transfer-load group most similar to experiments 1 and 2–the SS group. There 

was a significant main effect of epoch [F(1,11) = 83.91, p < 0.001]. However, neither 

the main effect of context-type [F(1,11) = 0.495, p > 0.49, NS], nor the context-type by 

epoch interaction [F(1,11) = 0.31, p > 0.59, NS] were significant. No other effects were 

significant (see Table C11). 

To determine if contextual cueing occurred in the DD transfer-load group, a 2 

(context-type) x 2 (epoch) repeated measures ANOVA was applied to response times. 
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There was a significant main effect of epoch [F(1, 11) = 37.55, p < 0.001]. However, 

neither the main effect of context-type [F(1,11) = 0.392, p > 0.54, NS], nor the context-

type by epoch interaction [F(1,11) = 0.35, p > 0.56, NS] were significant. No other 

effects were significant (see Table C12). Just as experiment 2, experiment 3 failed to 

produce a reliable contextual cueing effect. 

2.3.2.3.1 Workload Results 

A 2(load) x 3 (configuration-group) x [2(context-type) x 15(block)] mixed ANOVA was 

conducted on phase-1 response times to determine if there were systematic differences 

attributable to differences in workload. After removing outliers, there were 28 

participants in the dual group and 28 participants in the single group. Block, and the 

context-type x block interaction, violated sphericity, and the Greenhouse-Geisser 

correction was used. 

On average, dual-task response times (MDual = 2490.58 ms) were greater than 

single-task response times (MSingle = 1875.72 ms), and significantly interacted with block 

[F(1.69, 84.8) = 4.65, p = 0.016] (see Table C13). Response times from the dual-task 

condition decreased at a faster rate than response times from the single-task condition 

(see Figure 15). No other interactions were significant. 

 

Figure 15. The load x block interaction on response times from phase-1. Error bars represent 95% 

confidence intervals. 
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2.3.2.3.2 Training and Transfer Results 

Just as the trial accuracy analyses above, the response time analyses are divided between 

equivalency analyses of phase-1 and phase-2 analyses for determining differences when 

transferring from low-load to high-load, and vice versa. 

2.3.2.3.2.1 Training Analyses 

To determine if SS and SD were equivalent in phase-1, a 2(transfer-load) x 3 

(configuration-group) x [2(context-type) x 15(block)] mixed ANOVA was conducted. 

After removing outliers, there were 13 participants in the SS group and 14 participants in 

the SD group. Block, and the context-type x block interaction, violated sphericity, and 

the Greenhouse-Geisser correction was used. There was a main effect of block, [F(7.57, 

158.94) = 12.35, p < 0.001], where response times decreased from the first block to the 

last block (15th) of phase-1. Importantly, there was not a main effect of transfer-load 

[F(1, 21) = 0.019, p > 0.89, NS], nor did transfer-load interact with any of the other 

independent variables (see Table C14). 

To determine if DD and DS were equivalent, a 2(transfer-load) x 3 (configuration-

group) x [2(context-type) x 15(block)] mixed ANOVA was conducted. After removing 

outliers, there were 14 participants in the DS group and 14 participants in the DD group. 

Block, and context x block, violated sphericity, and the Greenhouse-Geisser correction 

was used. There was a main effect of block [F(1.73, 38.07) = 9.15, p = 0.001]. 

Importantly, there was not a main effect of transfer-condition [F(1, 22) = 1.59, p > 0.21], 

and transfer-condition did not interact with context (p > 0.83), or with block (p > 0.09), 

or with context x block (p > 0.14). No other effects were significant (see Table C15). 

The results from the first two analyses demonstrate the equivalency of SS to SD and DS 

to DD in the first phase of the experiment. 

2.3.2.3.2.2 Transfer Analyses 

To determine if SD and SS differed after being transferred to a dual task scenario or 

continuing with a single task scenario, a 2(transfer-load) x 3 (configuration-group) x 

[2(context-type) x 15(block)] mixed ANOVA was conducted. After removing outliers, 

there were 13 participants in the SD group and 13 participants in the SS group. Block 
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violated sphericity, and the Greenhouse-Geisser correction was used (see Table C16). 

There was a main effect of transfer-load [F(1, 20) = 15.30, p = 0.001], demonstrating 

that transferring from a single-task to a dual-task scenario affected response times 

between groups. No other effects were significant. 

To determine if SS and DS differed after being transferred to a single task scenario 

or continuing with a dual task scenario, a 2(transfer-load) x 3 (configuration-group) x 

[2(context-type) x 15(block)] mixed ANOVA was conducted. After removing outliers, 

there were 15 participants in the DS group and 13 participants in the SS group. Block 

violated sphericity, and the Greenhouse-Geisser correction was used. Importantly, there 

was not a main effect of transfer-load [F(1, 22) = 1.2, p > 0.28, NS], nor did transfer-

load interact with any other independent variable. No other effects were significant (see 

Table C17).  

2.3.2.3.3 Experiment 3 Response Time Results Summary 

Experiment 3 failed to produce a reliable contextual cueing effect. Dual-task conditions 

produced longer response times than single-task conditions. Not surprisingly, 

transferring from a single-task to a dual-task caused an increase in response times, and 

transferring from a dual-task to a single-task caused a reduction in response times. 

2.3.2.4 Experiment 3 Scan Pattern Results 

As in experiments 1 and 2, ProtoMatch software (Myers & Schoelles, 2005) was used to 

calculate dwells, determine the items associated with each dwell, and calculate 

dependent measures associated with dwells and associated objects such as dwell 

durations. To determine if visual scans were refined across repeated searches through 

repeating contexts, NSIs were computed for each type of context for each participant. 

There were 30 analyzable blocks of 24 trials (6 epochs) in experiment 3. The following 

analyses are directed toward determining if all FAST criteria are present in experiment 

3. The section is divided into FAST’s criteria, where the omnibus analysis, workload, 

and transfer results are reported.  
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2.3.2.4.1 Criterion 1: Dwell Reduction across Repeated Search 

The number of dwells and re-dwells was reduced across training-phase blocks of 

experiment 1 and 2. First, the results from analyses on the number of dwells to find the 

target are presented and followed by the same analyses for the number of re-dwells. 

2.3.2.4.1.1 Dwell Analyses  

If FAST’s first criterion of scan refinement occurred in experiment 3, the number of 

dwells to find a target should be reduced across blocks of trials. A 4(transfer-load) x 

3(configuration-group) x [2(context-type) x 20(block)] mixed ANOVA was performed 

on all dwells on stimulus items. After removing outliers, there were 14 DD participants, 

14 DS participants, 12 SD participants, and 12 SS participants; or, 16 participants from 

configuration group 1, and 18 from groups 2 and 3. Block and the context-type x block 

interaction violated sphericity, thus the Greenhouse-Geisser correction was used (see 

Table C18). There was a significant block x transfer-load interaction [F(23.58 ,314.45) = 

3.06, p < 0.001], where the number of dwells to find the target was reduced as a function 

of experience and cognitive load (see Figure 16). No other effects were significant. 

 

Figure 16. Block by transfer-load interaction on the number of dwells within a trial. Error bars 

represent 95% confidence intervals. 

i) Workload Effects 
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To determine how workload affected the number of dwells to find the target, a 2(load) x 

3 (configuration-group) x [2(context-type) x 15(block)] mixed ANOVA was conducted 

on the number of dwells from the first 15 blocks (phase 1). The dependent variable was 

the number of dwells to find the target. After outliers were removed, there were 24 

single-task participants and 28 dual-task participants; or, 16 participants from 

configuration group 1, and 18 from groups 2 and 3. Block, and the context-type x block 

interaction, violated sphericity, and the Greenhouse-Geisser correction was used (see 

Table C19). There was a block x load interaction, where participants in the dual-task 

conditions in phase-1 (DD and DS) reduced the number of dwells to find the target at a 

faster rate than participants in the single-task condition in phase-1 (SS and SD) (see 

Figure 16, blocks 1-15). This result shows number of dwells to find a target are reduced 

with experience, and at a greater rate in dual-task conditions. Moreover, there was also a 

context x block interaction [F(8.98, 413.13) = 3.97, p = 0.008], where the number of 

dwells to find the target were reduced across blocks in repeating contexts at a faster rate 

than in unique contexts. Finally, there was also a significant context x transfer-load x 

configuration-group interaction [F(2, 46) = 4.34, p = 0.019], where the number of dwells 

to find a target was greatest in repeating contexts from configuration-group 2 in the dual-

task conditions of phase-1 (see Figure 17). 

 

Figure 17. The load x configuration-group x context interaction. Error bars represent 95% 

confidence intervals. 
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ii) Training and Transfer Effects 

First equivalency analyses are conducted between SS and SD (and DS and DD) to 

ensure that the number of dwells to find the target were equivalent before being 

transferred into either a dual- or single-task scenario. 

a. Training Results 

A 2(transfer-load) x 3 (configuration-group) x [2(context-type) x 15(block)] mixed 

ANOVA was conducted to ensure that the SS and SD groups behaved equivalently in 

phase-1. After removing outliers, there were 12 SS participants and 12 SD participants; 

or, 7 participants from configuration group 1, 8 from group 2, and 9 participants from 

group 3. Neither block, nor the context-type x block interaction, violated sphericity, thus 

no corrections were used. Importantly, the main effect of transfer-load was not 

significant [F(1, 18) = 0.296, p > 0.59, NS], nor did it interact with any of the other 

independent variables (see Table C20). There was a significant effect of block [F(5.395, 

97.12) = 6.79, p < 0.001], where the number of dwells was significantly reduced across 

blocks. 

A 2(transfer-load) x 3 (configuration-group) x [2(context-type) x 15(block)] mixed 

analysis of variance was conducted to ensure that the DS and DD groups behaved 

equivalently in phase-1. After removing outliers, there were 14 DS participants and 14 

DD participants; or, 9 participants from configuration group 1, 10 from group 2, and 9 

participants from group 3. Block, and the context-type x block interaction, violated 

sphericity, and the Greenhouse-Geisser correction was used (see Table C21). 

Importantly, the main effect of transfer-load was not significant [F(1, 22) = 0.001, p > 

0.97, NS], nor did it interact with any of the other independent variables. There was a 

significant context-type x block interaction [F(6.87, 151.2) = 2.3, p = 0.03], where the 

number of dwells was significantly reduced across blocks at a greater rate in repeating 

contexts than in unique contexts. Finally, there was a significant context-type x 

configuration-group interaction [F(2, 22) = 5.29, p = 0.013], where configuration-group 

2 affected the number of dwells to find the target differently than the other two 

configuration-groups (see Figure 18). 
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Figure 18. Context x configuration-group interaction in phase-1 dual-dual and dual-single transfer-

load conditions from phase-1. Error bars represent 95% confidence intervals. 

b. Transfer Results 

To determine if transferring from a single-task to the dual-task affected the number of 

dwells to find the target, a 2(transfer-load) x 3 (configuration-group) x [2(context-type) x 

15(block)] mixed analysis of variance was conducted on phase-2 data from the SS and 

SD groups. After removing outliers, there were 12 SS participants and 12 SD 

participants; or, 7 participants from configuration group 1, 8 from group 2, and 9 

participants from group 3. The context-type x block interaction violated sphericity, thus 

Greenhouse-Geisser correction was used. Importantly, the main effect of transfer-load 

was not significant [F(1, 18) = 0.296, p > 0.59, NS], nor did it interact with any of the 

other independent variables (see Table C22). There was a significant main effect of 

block [F(14, 252) = 1.799, p = 0.039], where the number of dwells was significantly 

reduced across blocks. Interestingly, and unexpectedly, there was not a difference in the 

mean number of dwells between the SD (M = 5.5) and SS (M = 4.9) in phase-2 [F(1, 18) 

= 3.57, p > 0.074, NS]. 

Finally, to determine if transferring from a dual-task to the single-task affected the 

number of dwells to find the target, 2(transfer-load) x 3 (configuration-group) x 

[2(context-type) x 15(block)] mixed analysis of variance was conducted on phase-2 data 

from the SS and DS groups (see Table C23). After removing outliers, there were 14 DS 

participants and 12 SS participants; or, 9 participants from configuration group 1, 9 from 

group 2, and 8 participants from group 3. Importantly, the main effect of transfer-load 
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was not significant [F(1, 22) = 0.001, p > 0.97, NS], nor did it interact with any of the 

other independent variables. There was a significant main effect of block [F(14, 280) = 

2.37, p = 0.004], where the number of dwells was significantly reduced across blocks. 

Interestingly, and unexpectedly, there was not a difference in the mean number of dwells 

between the DS (M = 5.1) and SS (M = 4.9) in phase-2 [F(1, 20) = 0.641, p > 0.43, NS]. 

2.3.2.4.1.2 Re-dwell Analyses 

Further evidence that FAST’s first criterion of scan refinement occurred in experiment 3 

can be provided by reductions in re-dwells, as in experiments 1 and 2. A 4(transfer-load) 

x 3(configuration-group) x [2(context-type) x 20(block)] mixed ANOVA was performed 

on all re-dwells (two, or more, dwells assigned to the same display item within a trial). 

After removing outliers, there were 14 DD participants, 14 DS participants, 12 SD 

participants, and 12 SS participants; or, 16 participants from configuration group 1, and 

18 from groups 2 and 3. Block, and the context-type x block interaction violated 

sphericity, thus the Greenhouse-Geisser correction was used (see Table C24). 

There was a significant block x transfer-load interaction [F(21.08, 281.09) = 3.93, p 

< 0.001], where the mean number of re-dwells within a trial was reduced as a function of 

experience and cognitive load (see Figure 19).  
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Figure 19. Block by transfer-load interaction on the mean number of re-dwells per block of trials. 

Error bars represent 95% confidence intervals. 

iii) Workload Effects 

To determine how workload affected the number of dwells to find the target, a 2(load) x 

3 (configuration-group) x [2(context-type) x 15(block)] mixed ANOVA was conducted 

on the number of dwells from the first 15 blocks (phase 1). The dependent variable was 

the number of dwells to find the target. After removing outliers, there were 24 single-

task participants and 28 dual-task participants; or, 16 participants from configuration 

group 1, and 18 from groups 2 and 3. Block, and the context-type x block interaction, 

violated sphericity, and the Greenhouse-Geisser correction was used (see Table C25). 

Importantly, there was a block x load interaction [F(4.79, 220.49) = 4.71, p = 0.001], 

where participants in the dual-task conditions in phase-1 (DD and DS) reduced the 

number of re-dwells to find the target at a faster rate than participants in the single-task 

condition in phase-1 (SS and SD) (see Figure 19, blocks 1-15). This result demonstrates 

that number of re-dwells to find a target is reduced with experience, and at a greater rate 

in dual-task conditions. There was also a significant context x block x configuration-

group interaction [F(13.42, 308.62) = 1.75, p = 0.048]. 
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iv) Training and Transfer Effects 

First equivalency analyses are conducted between SS and SD (and DS and DD) to 

ensure that the number of dwells to find the target were equivalent before being 

transferred into either a dual- or single-task scenario. 

a. Training Results 

A 2(transfer-load) x 3 (configuration-group) x [2(context-type) x 15(block)] mixed 

analysis of variance was conducted to ensure that the SS and SD groups behaved 

equivalently before moving on to phase-2 of the experiment. After removing outliers, 

there were 12 SS participants and 12 SD participants; or, 7 participants from 

configuration group 1, 8 from group 2, and 9 participants from group 3. Block violated 

sphericity, thus the Greenhouse-Geisser correction was used. Importantly, the main 

effect of transfer-load was not significant [F(1, 18) = 0.725, p > 0.40, NS], nor did it 

interact with any of the other independent variables (see Table C26). There was a 

significant effect of block [F(6.07, 109.19) = 5.21, p < 0.001], where the number of re-

dwells was significantly reduced across blocks. 

A 2(transfer-load) x 3 (configuration-group) x [2(context-type) x 15(block)] mixed 

analysis of variance was conducted to ensure that the DS and DD groups behaved 

equivalently before moving on to phase-2 of the experiment. After removing outliers, 

there were 14 DS participants and 14 DD participants; or, 9 participants from 

configuration group 1, 10 from group 2, and 9 participants from group 3. Block, and the 

context-type x block interaction, violated sphericity, and the Greenhouse-Geisser 

correction was used. Importantly, the main effect of transfer-load was not significant 

[F(1, 22) = 0.001, p > 0.97, NS], nor did it interact with any of the other independent 

variables (see Table C27). There was a significant main effect of block [F(4.27, 93.97) = 

12.11, p < 0.001], where the number of dwells was significantly reduced across blocks. 

b. Transfer Results 

To determine if transferring from a single-task to the dual-task affected the number of 

dwells to find the target, a 2(transfer-load) x 3 (configuration-group) x [2(context-type) x 

15(block)] mixed analysis of variance was conducted on phase-2 data from the SS and 

SD groups. After removing outliers, there were 12 SS participants and 12 SD 
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participants; or, 7 participants from configuration group 1, 8 from group 2, and 9 

participants from group 3. Block, and the context-type x block interaction, violated 

sphericity, thus Greenhouse-Geisser correction was used. Interestingly, and different 

from the dwell analysis, there was a significant main effect of transfer-condition [F(1, 

18) = 7.35, p < 0.014].  Moreover, transfer-condition interacted with configuration-group 

[F(2, 18) = 3.57, p = 0.049], where configuration-group 2 resulted in more re-dwells in 

the SD group than in the SS group during phase-2 of the experiment (see Table C28 and 

Figure 20). There was a significant main effect of context-type [F(1, 18) = 8.357, p = 

0.010], where repeating contexts (M = 0.22) had fewer re-dwells than unique contexts 

(M = 0.27).  

 

Figure 20. The configuration-group x transfer-load interaction from single-dual and single-single 

phase-2 re-dwells. Error bars represent 95% confidence intervals. 

Finally, to determine if transferring from a dual-task to the single-task affected the 

number of dwells to find the target, 2(transfer-load) x 3 (configuration-group) x 

[2(context-type) x 15(block)] mixed analysis of variance was conducted on phase-2 data 

from the SS and DS groups (see Table C29). After removing outliers, there were 14 DS 

participants and 12 SS participants; or, 9 participants from configuration group 1, 9 from 

group 2, and 8 participants from group 3. Importantly, the main effect of transfer-load 

was not significant [F(1, 22) = 0.001, p > 0.97, NS], nor did it interact with any of the 

other independent variables. Interestingly, and unexpectedly, there was not a difference 
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in the mean number of re-dwells between the DS and SS in phase-2 [F(1, 20) = 0.641, p 

> 0.43, NS]. 

2.3.2.4.1.3 Criterion 1 Summary 

First, workload affected dwells and re-dwells similarly. For both, block and load 

interacted, where dwells and re-dwells in the dual-task groups of phase-1 were reduced 

at a faster rate than from the single-task group. Surprisingly, configuration-group 2 

seemed to affect dwells and re-dwells in a different manner than the other configuration-

groups. This was unexpected and it is unclear what was special about configuration-

group 2.  

Second, phase-1 load equivalency analyses produced no differences between SS and 

SD or differences between DS and DD. Consequently, behavior from phase-1 SS and SD 

(i.e., single-task) was equivalent. The same conclusion can also be drawn for the DS and 

DD groups. Because the equivalency analyses did not produce differences between the 

groups, any differences between the SS and SD groups and the SS and DS groups from 

phase-2 would be attributable to transferring from dual-task to single-task, or vice versa. 

Finally, the transfer analyses revealed that dwells continued reduction across block, 

regardless of being transferred from dual-task to single-task or single-task to dual-task. 

Re-dwells continued reduction when transferring from single-task to dual-task, but did 

not continue when transferring from dual-task to single-task. Furthermore, unique 

contexts received more re-dwells than repeating contexts after transferring from a single-

task to a dual-task. Furthermore, transfer condition interacted with configuration-group 

on re-dwells when transferring from a single-task to a dual task, but did not interact 

when transferring from a dual-task to a single task. 

 From the analyses, criterion 1 of FAST is supported–both dwells and re-dwells 

were reduced across blocks during the first phase of the experiment, and dwells 

continued reduction through the second phase of the experiment. Furthermore, increased 

cognitive load affects visual scans by increasing the number of dwells and re-dwells to 

be eventually reduced with experience.   
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2.3.2.4.2 Criteria 2 & 3: Scan Pattern Similarity Increases Independent of Dwell 
Reduction & Patterns from Repeating Contexts Increase at a Faster Rate 
than Patterns from Unique Contexts 

Visual scan analyses were conducted to determine if FAST criteria 2 and 3 were present 

in experiment 3. The NSI metric, used in experiments 1 and 2, was used for computing 

similarity. If the second criterion is present, then there should be a significant main 

effect of epoch on NSIs. If the third criterion is present, then there should be a 

significant context-type x epoch interaction where repeating contexts increase in 

similarity at a faster rate across epochs than unique contexts. Only dwells that were 

assigned a stimulus display item were used in the NSI calculation. First, the omnibus 

ANOVA is reported, and is followed by workload and transfer analyses. 

To determine if there were differences in NSIs as a function of transfer-load, 

configuration-group, context-type or epoch, a 4(transfer-load) x 3(configuration-group) 

x [2(context-type) x 6(epoch)] mixed ANOVA was performed on all mean NSIs (see 

Table C30). After removing outliers, there were 14 DD participants, 14 DS participants, 

12 SD participants, and 12 SS participants; or, 16 participants from configuration group 

1, and 18 from groups 2 and 3, resulting in approximately 37,440 visual scans were 

included in the analyses. Epoch violated the sphericity assumption, and associated 

results are reported using the Greenhouse-Geisser correction. There was a main effect of 

context-type [F(1, 40) = 266.52; p < 0.001] where repeating contexts (MRepeating = 0.41) 

were significantly more similar than unique contexts (MUnique = 0.39). There was a main 

effect of epoch [F(3.47, 138.69) = 48.22; p < 0.001] demonstrating an increase in 

similarity across epochs. Importantly, there was a reliable epoch by configuration-type 

interaction [F(5, 200) = 7.78; p < 0.001] demonstrating that repeating contexts increased 

in similarity across epochs at a faster rate than unique contexts (see Figure 21). 
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Figure 21. The epoch x configuration-type interaction on NSIs from experiment 3. Error bars 

represent 95% confidence interval. 

There was also a reliable main effect of transfer-condition (SS, SD, DS, DD) [F(3, 40) = 

4.561; p = 0.008]. Planned pairwise comparisons revealed that the SS group’s mean NSI 

was significantly higher than the DS or DD mean NSIs (see Figure 22). These results 

demonstrate that a dual task situation affects the repeatability of scan patterns, even 

when the added task is auditory.   

 

Figure 22. Main effects of transfer-load conditions on NSIs from experiment 3. Error bars represent 

95% confidence interval. 
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2.3.2.4.2.1 Workload Effects 

To determine how workload affected scanning similarity, a 2(load) x 3(configuration-

group) x [2(context-type) x 3(epoch)] mixed ANOVA was conducted on NSIs from 

phase-1 (epochs 1-3). After removing outliers, there were 24 single-task participants and 

28 dual-task participants; or, 16 participants from configuration group 1, and 18 from 

groups 2 and 3. Epoch violated sphericity, and the Greenhouse-Geisser correction was 

used (see Table C31). There was a significant 4-way context-type x epoch x load x 

configuration-group interaction [F(4, 92) = 2.64; p = 0.039] (see Figure 23). This result 

indicates that context-types change differentially across epochs within each 

configuration-group and is differentially affected by the level of cognitive load.  

 

Figure 23. The context-type x epoch x load x configuration group interaction on normalized 

similarity scores from experiment 3. Error bars were omitted for clarity. 

2.3.2.4.2.2 Training and Transfer Effects 

First equivalency analyses were conducted between SS and SD (and DS and DD) to 

ensure that the number of dwells to find the target were equivalent before being 

transferred into either a dual- or single-task scenario. 

i) Training Results 

A 2(transfer-load) x 3 (configuration-group) x [2(context-type) x 3(epoch)] mixed 

analysis of variance was conducted to ensure that the SS and SD groups behaved 
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equivalently before moving on to phase-2 of the experiment. After removing outliers, 

there were 12 SS participants and 12 SD participants; or, 7 participants from 

configuration group 1, 8 from group 2, and 9 participants from group 3. Importantly, the 

main effect of transfer-load was not significant [F(1, 18) = 0.47, p > 0.5, NS], nor did it 

interact with any of the other independent variables (see Table C32). There was a 

significant context-type x epoch interaction [F(2, 36) = 10.15, p < 0.001], where scan 

patterns from repeating contexts increased in similarity at a faster rate across epochs than 

scan patterns from unique contexts. 

A 2(transfer-load) x 3 (configuration-group) x [2(context-type) x 3(epoch)] mixed 

analysis of variance was conducted to ensure that the DS and DD groups behaved 

equivalently before moving on to phase-2 of the experiment. After removing outliers, 

there were 14 DS participants and 14 DD participants; or, 9 participants from 

configuration group 1, 10 from group 2, and 9 participants from group 3. Epoch violated 

sphericity, and the Greenhouse-Geisser correction was used. Again, the main effect of 

transfer-load was not significant [F(1, 22) = 0.64, p > 0.43, NS], nor did it interact with 

any of the other independent variables (see Table C33). There was a significant context-

type x epoch interaction [F(2, 44) = 7.92, p = 0.001], where scan patterns from repeating 

contexts increased in similarity across blocks at a faster rate than scan patterns from 

unique contexts. 

ii) Transfer Results 

To determine if transferring from a single-task to the dual-task affected scan pattern 

similarity, a 2(transfer-load) x 3 (configuration-group) x [2(context-type) x 3(epoch)] 

mixed analysis of variance was conducted on phase-2 data from the SS and SD groups. 

After removing outliers, there were 12 SS participants and 12 SD participants; or, 7 

participants from configuration group 1, 8 from group 2, and 9 participants from group 

3. Epoch violated sphericity, thus Greenhouse-Geisser correction was used. There was 

not a significant main effect of transfer-condition [F(1, 18) = 3.22, p = 0.09, NS].  There 

was a main effect of context-type [F(1, 18) = 76.56, p < 0.001], where repeating contexts 

were more similar on average than unique contexts. No other effects were significant 

(see Table C34). 
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Finally, to determine if transferring from a dual-task to the single-task affected scan 

pattern similarity, 2(transfer-load) x 3 (configuration-group) x [2(context-type) x 

15(block)] mixed analysis of variance was conducted on phase-2 data from the SS and 

DS groups (see Table C35). After removing outliers, there were 14 DS participants and 

12 SS participants; or, 9 participants from configuration group 1, 9 from group 2, and 8 

participants from group 3. Interestingly, there was a main effect of scan pattern 

similarity between the DS and SS in phase-2 [F(1, 20) = 8.49, p = 0.009], where scan 

patterns from the SS group (MSS = 0.48) were more similar than from the DS group (MDS 

= 0.44). 

2.3.2.4.2.3 Criteria 2 & 3 Summary 

FAST criteria 2 and 3 were supported with data from experiment 3. The second criterion 

of FAST, scan pattern similarity increases independent of dwell reduction, was 

supported by the omnibus ANOVA (see Figure 21), the workload ANOVA, and each of 

the condition equivalency ANOVAs. Importantly, the third criterion, scan pattern 

similarity increases at a faster rate in repeating contexts than in unique contexts, was 

supported in experiment 3 while being absent from experiments 1 and 2.  

Increased cognitive load in dual-task groups reduced the similarity of scan patterns 

(see Figure 22). Interestingly, when transferring from a dual-task scenario to a single-

task scenario (DS), scan pattern similarity within the single-task scenario does not reach 

the same degree of similarity if one were to have started and finished the experiment in a 

single-task scenario (SS). Furthermore, scan pattern similarity was no different after 

being transferred to a dual-task scenario and having started in a single-task scenario (SD) 

when compared to having started and finished the experiment in a single-task scenario 

(SS). Together, these results suggest that scan patterns are not affected by increased 

cognitive load after they are acquired, but are disrupted with increased load (though not 

completely) during their acquisition. 

Of particular interest was determining if different configuration-groups resulted in 

different degrees of scan pattern similarity. Although configuration-group interacted 

with context-type, epoch, and load in the workload analyses, it did not interact with any 
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other independent variable in any of the other analyses. This suggests that conditions 

must be just right for different configuration-groups to affect scan pattern similarities.  

2.3.2.5 Experiment 3 Dwell Duration Analyses 

Although FAST does not claim that dwell durations should change with experience in a 

task environment, dwell durations were analyzed for completeness. A 4(transfer-load) x 

3(configuration-group) x [2(context-type) x 30(block)] mixed ANOVA was performed 

on all dwells (both assigned to display items, and those unassigned to display items were 

included). After removing outliers, there were 14 DD participants, 14 DS participants, 

12 SD participants, and 12 SS participants; or, 16 participants from configuration group 

1, and 18 from groups 2 and 3. Block and the context-type x block interaction violated 

sphericity, thus the Greenhouse-Geisser correction was used (see Table C36). There was 

a significant main effect of context-type [F(1, 40) = 9.86, p = 0.003], where unique 

contexts resulted in shorter mean dwell durations (MUnique = 257.6) than repeating 

contexts (MRepeating = 264.3). There was also a significant block x transfer-load 

interaction [F(21.24, 283.15) = 5.84, p < 0.001] (see Figure 24). 

 

Figure 24. The block x transfer-load interaction on dwell durations from experiment 3. Error bars 

represent 95% confidence intervals. 
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2.3.2.5.1 Dwell Duration Workload Effects 

A 2(load) x 3 (configuration-group) x [2(context-type) x 30(block)] mixed ANOVA was 

conducted to determine if there were systematic differences in mean dwell durations that 

are attributable to differences in workload. After removing outliers, there were 28 

participants in the dual group and 24 participants in the single group. Block, and the 

context-type x block interaction, violated sphericity, and the Greenhouse-Geisser 

correction was used (see Table C37). 

The main effect of context-type approached significance [F(1, 46) = 5.84, p = 

0.053], where unique contexts resulted in lesser mean dwell durations (MUnique = 260.41) 

than repeating contexts (MRepeating = 264.8). There was also a block x load interaction 

[F(5.4, 248.55) = 2.84, p = 0.014], where dwell durations in the dual-task were reduced 

at a slower rate than dwell durations in the single-task. 

2.3.2.5.2 Dwell Duration Training and Transfer Effects 

First equivalency analyses are conducted between SS and SD (and DS and DD) to 

ensure that dwell durations were equivalent before being transferred into either a dual- or 

single-task scenario. 

2.3.2.5.2.1 Training Results 

A 2(transfer-load) x 3 (configuration-group) x [2(context-type) x 15(block)] mixed 

analysis of variance was conducted to ensure that the SS and SD groups behaved 

equivalently before moving on to phase-2 of the experiment. After removing outliers, 

there were 12 SS participants and 12 SD participants; or, 7 participants from 

configuration group 1, 8 from group 2, and 9 participants from group 3. Block violated 

sphericity, thus the Greenhouse-Geisser correction was used. Importantly, the main 

effect of transfer-load was not significant [F(1, 18) = 0.70, p > 0.41, NS], nor did it 

interact with any of the other independent variables (see Table C38). The context x block 

interaction approached significance [F(14, 252) = 1.70, p = 0.056] (see Figure 25). 
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Figure 25. The single-task context x block interaction on dwell durations when aggregating dwell 

durations into high and low load of experiment 3 phase-1. Error bars represent 95% confidence 

intervals. 

A 2(transfer-load) x 3 (configuration-group) x [2(context-type) x 15(block)] mixed 

analysis of variance was conducted to ensure that the DS and DD groups behaved 

equivalently before moving on to phase-2 of the experiment. After removing outliers, 

there were 14 DS participants and 14 DD participants; or, 9 participants from 

configuration group 1, 10 from group 2, and 9 participants from group 3. Block, and the 

context-type x block interaction, violated sphericity, and the Greenhouse-Geisser 

correction was used (see Table C39). Importantly, the main effect of transfer-load was 

not significant [F(1, 22) = 0.002, p > 0.96, NS], nor did it interact with any of the other 

independent variables. There was a significant main effect of block [F(4.85, 106.69) = 

2.39, p = 0.045], where dwell durations were reduced across the blocks of phase-1. 

2.3.2.5.2.2 Transfer Results 

To determine if transferring from a single-task to the dual-task affected dwell 

durations, a 2(transfer-load) x 3 (configuration-group) x [2(context-type) x 15(block)] 

mixed analysis of variance was conducted on phase-2 data from the SS and SD groups. 

After removing outliers, there were 12 SS participants and 12 SD participants; or, 7 

participants from configuration group 1, 8 from group 2, and 9 participants from group 
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3. Block, and the context-type x block interaction, violated sphericity, thus the 

Greenhouse-Geisser correction was used. The main effect of transfer-load was 

significant [F(1, 18) = 16.97, p = 0.001], where the SS group had shorter mean dwell 

durations (MSS = 224.35) than the SD group (MSD = 296.1) during phase-2. Transfer-load 

did not interact with any other independent variables (see Table C40). There was also a 

significant main effect of context [F(1, 18) = 9.98, p = 0.005], where mean dwell 

durations were significantly greater in repeating contexts (MRepeating = 268.1) than in 

unique contexts (MUnique = 252.3).  

Finally, to determine if transferring from the dual-task to the single-task affected the 

dwell durations, a 2(transfer-load) x 3(configuration-group) x [2(context-type) x 

15(block)] mixed analysis of variance was conducted on phase-2 data from the SS and 

DS groups (see Table C41). After removing outliers, there were 14 DS participants and 

12 SS participants; or, 9 participants from configuration group 1, 9 from group 2, and 8 

participants from group 3. The main effect of transfer-load was not significant [F(1, 20) 

= 0.44, p > 0.51, NS]. However, there was a significant context-type x transfer-load 

interaction [F(1, 20) = 5.62, p = 0.028], where dwell durations from repeating contexts 

were equivalent across SS and DS conditions and dwell durations from  unique contexts 

were less in SS than in DS (See Figure 26). 
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Figure 26. The context-type x transfer-load interaction between single-single and dual-single in 

phase-2 of experiment 3. Error bars represent 95% confidence interval. 

2.3.2.6 Qualifying Influences of Repeating Scan Patterns 

There are two extremes of statistical influences on goal-oriented behavior that were 

discussed earlier, exogenous and endogenous influences. Between these extremes are 

non-deliberate behaviors that serve a goal and appear strategic. The two extremes and 

the area between them (see Figure 1) are useful for predictions of scanning refinement. 

Scans that result from purely endogenous influences would not be refined. After 

completing a goal by scanning a stimulus for the first time, all subsequent scan patterns 

in service of the same goal on the same stimulus would be identical to the first scan 

pattern. Consequently, scan patterns would repeat perfectly within individuals, but likely 

be different across individuals. Although this seems very unlikely and a “straw man”, 

this is precisely what is predicted by scanpath theory (Chernyak & Stark, 2001; Noton & 

Stark, 1971a, 1971b; Stark & Ellis, 1981; Stark et al., 1980). Indeed, repeating scans 

were not repeated identically across multiple views of the same stimulus, and instead 

increased in similarity with experience across all three experiments (see Figures 7, 10, 

and 21). 

Behavior from purely exogenous influences would not be refined, either. The same 

stimulus would always influence scan patterns in the same manner, leading to repeating 
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scan patterns. Again, repeating scans were not repeated identically across multiple views 

of the same stimulus, and instead increased in similarity with experience across all three 

experiments. It is unknown if exogenous influences differ across individuals. If 

exogenous influences are assumed to be like reflexes (and similar across individuals) 

then repeating scan patterns on the same stimulus should be similar across individuals.  

The extreme influences are clearly difficult to distinguish between with observable 

behavior. Indeed, experiments 1 and 2 show that neither extreme influence (endogenous 

or exogenous) is ever the sole influence of scan patterns. Rather, it is more likely that 

behavior results from influences falling somewhere between these extremes. Learning is 

assumed to be absent in both extremes. Endogenous influences may occur after learning 

had ceased such as a settled on and deliberate strategy, while purely exogenous 

influences are mostly void of learning. Although it would be difficult to differentiate 

between endogenous and exogenous influences, it is possible determine differences 

between statistical and endogenous influences, and statistical and exogenous influences. 

This is because effects of statistical influences are valuable to the process associated to 

learning and adaptation (Blessing & Anderson, 1996; Gray, Sims, Fu, & Schoelles, 

2006; Haider & Frensch, 1999). As experience with a task environment and a paired 

goal increase, influences may shift from what appear to be exogenous influences to what 

appear to be to be endogenous influences, though may never become a deliberate or 

consciously executed strategy. 

It is possible to determine if visual scan refinement across epochs is solely a 

function of the visual stimulus. If repeating scan patterns result from only exogenous 

influences, and if exogenous influences are the same across individuals (like reflexes), 

then between-participant NSIs will be identical to the within-participant NSIs, To 

determine between-participant NSIs, visual scans from participants searching through 

the same repeating contexts were compared at each block for each of the 12 repeating 

contexts, as well as for unique context target locations. For example, participant-1’s 

context-A scan pattern was compared to participant-2’s context-A scan pattern, and then 

to participant-3’s context-A scan pattern etc. Next, mean NSIs from each context per 

block were averaged into epochs. Finally, all repeating contexts were averaged together 

to get the mean repeating context NDI at each epoch.  
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Although the within-participant and between-participant NSIs cannot be compared 

against each other, Figure 27 shows that not only are between-participant NSIs from 

repeating contexts more similar than NSIs from unique contexts, but also that the degree 

of between-participant similarity is less than within-participant similarity. Because 

between-participant and within-participant NSIs were not exact, the results indicate that 

visual scans were not produced solely from exogenous influences, but were produced 

from a mix of endogenous and exogenous influences as argued by Josephson and 

Holmes (2002).  

 

Figure 27. Between-participant and within-participant scan pattern similarities from repeating and 

unique contexts in experiment 3. Error bars represent standard error. 

Experiment 3 was designed to determine if different people scan the same repeating 

contexts in a similar manner. Furthermore, dual-tasks are argued to provide exogenous 

processes greater opportunity to influence eye movements, and Figure 22 shows that 

dual-task scenarios decrease visual scan similarity. This result suggests that repeating 

scan patterns from repeating contexts are partly the result of endogenous processes that 

are overridden when scanning in a dual-task scenario. 
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2.3.3 Experiment 3 Conclusions 

There were four goals for experiment 3. The first goal was to increase the likelihood of 

producing contextual cueing effects (estimated by response time) by reducing the size of 

the target and distractors. The second goal was to manipulate the cueing effect by adding 

dual-task conditions. The third goal was to determine the presence/absence of each of 

the three hallmarks of visual scan refinement, which was facilitated by reducing the size 

of stimulus items. A corollary goal was to determine if different people scan the same 

stimulus in a similar manner. Finally, the degree to which dual-task scenarios disrupt 

scanning was determined. 

Like experiment 2, experiment 3 failed to duplicate contextual cueing effects using 

the traditional dependent variable of mean response time across epochs of trials in any of 

the transfer conditions (SS, SD, DS, or DD).  

The visual scanning refinement analyses corroborate the results from experiments 1 

and 2, providing further support for FAST in that all three criteria were met. Experiment 

3 shows that repeating scan patterns may come with the cost of increasing dwell 

durations – repeating contexts had a mean dwell duration that was greater than unique 

contexts. 

First, although contextual cueing, measured by response time, did not occur, all 

three necessary hallmarks of scanning refinement were present. Second, dual-task 

scenarios failed to eliminate refinement, demonstrating that refinement can occur during 

dual-task scenarios, but to a lesser degree relative to single-task scenarios. Third, visual 

scan refinement as a strictly exogenous strategy can be ruled out because between-

participant NSIs for repeating contexts was not identical to within-participant NSIs. 
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3. Summary and Conclusions 

Functionally adaptive scanning theory (FAST) was introduced as a theory of adaptation 

to repeated visual search. FAST is an incorporation of the phenomena of repeating scan 

patterns with behavior refinement. FAST is different from existing theories of repeating 

scan patterns, such as scanpath theory. Where scanpath theory posits repeating scan 

patterns are the sole result of endogenous influences, FAST maintains that repeating 

scan patterns are the result of statistical regularities in task environments that lead to 

scan pattern refinement. Consequently, FAST has 3 refinement criteria of repeating scan 

patterns: (1) the number of dwells to find a target will decrease across repeated views of 

a stimulus; (2) scan patterns increase in similarity across repeated searches through the 

same stimulus; and (3) scan patterns from repeating stimuli become more similar at a 

faster rate than scan pattern similarity from unique stimuli. The 3 criteria of FAST also 

provide a new metric for detecting benefits from repeatedly searching through the same 

stimulus–the phenomenon known as contextual cueing. Three experiments were 

conducted to shed light on the accuracy of FAST, uncover its limitations, and direct 

future research. 

There were two goals of the first experiment. First was to provide support for FAST. 

Second was to counter previously reported data demonstrating that eye movements were 

unnecessary to elicit contextual cueing benefits (Chun & Jiang, 1998). In support of 

FAST, the first criterion, the number of dwells to find a target decrease across repeated 

views of a stimulus, was present in experiment 1. Interestingly, the number of dwells to 

find the target in repeating contexts was reduced with experience, and was statistically 

indistinguishable from the number of dwells reduced in unique contexts. This is likely a 

result of the experimental design. Because there were only 12 possible target locations 

used in unique contexts across the experiment, it is possible that participants picked up 

on this regularity and used it to their advantage. Indeed, reducing the number of dwells 

to find the target in unique contexts could help explain why response times in unique 

contexts get faster with experience (see Figure 3). 

Evidence for FASTs 2nd criterion, scan patterns increase in similarity across 

repeated searches through the same stimulus, was also found in experiment 1. 

Interestingly, scan pattern similarities from unique contexts also increased with 
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experience at a similar rate when compared to scan patterns from repeating contexts. 

Consequently, FAST’s 3rd criterion, scan patterns from repeating contexts increase in 

similarity at a faster rate than patterns from unique contexts, was not present in 

experiment 1. Again, the increasing similarity of unique contexts is likely a function of a 

small number of possible target locations used in unique contexts. Experiment 1 

provides evidence for a weak interpretation of FAST, scanning analyses produced 

evidence for FAST’s first two criteria, but failed to produce evidence for the third (see 

Table 3, below). 

What lead to the absence of criterion 3 in experiment 1? Figure 7 shows that 

differences between scan pattern similarities from repeating and unique contexts had 

emerged within the first epoch. A step-wise scan pattern analysis was conducted to 

determine if the 3rd criterion was present within the first 6 views of repeating and unique 

contexts. Interestingly and surprisingly, the first two visual scans from repeating 

contexts were found to be more similar than the first two scans from unique contexts, 

and this is precisely what Stark and colleagues propose in scanpath theory.  

There was also evidence that eye movements play a role during contextual cueing. 

Chun & Jiang’s (experiment 5, 1998) testing-phase accuracy result (repeating contexts 

result in a higher response accuracy than unique contexts) must be interpreted cautiously 

as eye movement controls were less than adequate. Indeed, all that can be interpreted 

from their testing-phase accuracy result is that briefly displayed contexts result in a 

reduction in response accuracy from the training phase, and that repeating contexts result 

in a smaller reduction than unique contexts. It is beyond the scope of the results to 

conclude that eye movements did not contribute to the repeating context benefit, and eye 

movements could still occur during the testing phase. Consequently, eye movement 

control was increased in the experiment 1 maximum-control group. 

Experiment 1 used a paradigm very similar to Chun and Jiang’s experiment 5 

(1998), and produced a reliable contextual cueing effect during the training phase. 

However, experiment 1 did not duplicate Chun & Jiang’s testing-phase accuracy results 

(see Table 1). Moreover, response accuracy from repeating contexts was lower than 

from unique contexts in the maximum-control condition, and response accuracy from 

repeating contexts was higher than from unique contexts in the minimum-control 
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condition. This result suggests that increases in eye movement controls hinder cueing 

effects even though the condition (maximum-control, minimum-control) x context-type 

(repeating, unique) interaction on testing-phase response accuracy was not significant. 

These response accuracy trends are predicted when eye movements are considered 

important to contextual cueing, and are opposite of the trends predicted when eye 

movements are believed to be unimportant to contextual cueing. Experiment 1 provides 

weak evidence for the importance of eye movements during contextual cueing. 

Experiment 2 was conducted to further test FAST and to determine if gaze-

contingent crosshairs affected testing-phase accuracy in experiment 1. The paradigm was 

nearly identical to Chun and Jiang’s (experiment 5, 1998), and only differed in a 

seemingly minor detail–the dwell control was a + rather than a •. Experiment 2 failed to 

establish a contextual cueing effect in the training phase. Interestingly, testing-phase 

response accuracy results from gaze-contingent and static crosshairs were approximately 

equal to, or less than, the testing-phase response accuracy from the minimum-control 

group of experiment 1 (see Table 2). It is impossible to determine the importance of eye 

movements in contextual cueing in experiment 2 because cueing was not established by 

the end of the training phase. However, experiment 2 provided an opportunity to test 

FAST’s criteria when contextual cueing was not established with trial response times. 

Scan pattern analyses again produced FAST’s first two criteria, but failed to 

produce the third. Interestingly, these results occurred in the absence of a reliable 

contextual cueing effect measured with response time (see Table 3, below). Indeed the 

presence of FAST’s first two criteria in experiment 2 duplicated the results from 

experiment 1, providing more evidence that scan patterns are repeated in goal-oriented 

tasks (e.g., visual search), that the number of dwells composing scan patterns are 

reduced with experience, and that scan pattern similarity increases with experience. 

Unfortunately, the third FAST criterion, scan patterns from repeating stimuli will 

increase in similarity at a faster rate than scan patterns from unique contexts, was not 

present in experiment 2.  

Another step-wise scan pattern analysis was conducted to determine if the 3rd 

criterion was present within the first 6 scans of experiment 2. As in experiment 1, the 
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first two visual scans from repeating contexts were found to be more similar than the 

first two scans from unique contexts in experiment 2. 

Finally, experiment 3 was designed to obtain FASTs 3rd criterion and ensure a 

contextual cueing effect (measured in response times) by extending the number of search 

trials from 480 (20 blocks; 4 epochs) to 720 (30 blocks; 6 epochs). Experiment 3 also 

included a 4 transfer-load conditions designed to help determine if scan pattern 

refinement was the result of implicit processes or explicit strategies–if scan pattern 

refinement is implicit, it will not be eliminated in a dual-task scenario. As in experiment 

2, contextual cueing did not occur in either the single-single or dual-dual transfer-load 

conditions. Contextual cueing is a regularly reported phenomenon (Chun, 2000; Chun & 

Jiang, 1998; Jiang & Wagner, 2004; Song & Jiang, 2005); however, only 1 of 3 

experiments reported here produced the effect. Indeed, other researchers have reported 

having difficult with producing the effect (see Lleras & Von Muhlenen, 2004). It is 

impossible to determine just how difficult it is to establish the contextual cueing effect as 

research not duplicating the effect may be difficult to publish. The current research 

indicates that a better measure for detecting contextual cueing is FAST’s criteria.  

Scanning analyses were performed on experiment 3 data, and produced support for 

all three criteria (see Table 3). Furthermore, experiment 3 also showed that dual-task 

scenarios affect the similarity of scan patterns during the early blocks, but does not when 

the dual-task is introduced after blocks of only the search task.  

Table 3. FAST criteria and contextual cueing results present (✓) or absent (✕) from each 

experiment. 

Experiments FAST Criteria  Contextual Cueing 

 1 2 3  Training Testing 

Exp. 1 ✓ ✓ ✕  ✓ ✕ 

Exp. 2 ✓ ✓ ✕  ✕ ✕ 

Exp. 3 ✓ ✓ ✓  ✕ N/A 

 
The three experiments taken as a whole have implications for four areas of research. 

First, results from the experiments can be used to help understand endogenous and 

exogenous influences on visual scans. Second, the results support theories of repeating 



 

 109 

scan patterns. Third, the experiments argue the need to reevaluate the phenomena of 

contextual cueing. Finally, the results support the occurrence of behavioral refinement 

on visual scans. Each of these facets will be elaborated in the following sections. The 

thesis will be concluded with FAST’s validity, limitations, and directions for future 

research. 

3.1 Endogenous and Exogenous Influences on Scan Patterns 

Between the extremes of exogenous and endogenous influences are non-deliberate 

behaviors that serve a goal and appear strategic. The two extremes and the area between 

them (see Figure 1) are useful for understanding the influences behind repeating scan 

patterns. 

Scans that result from purely endogenous influences are not refined, but are reused 

repeatedly. Furthermore, scan patterns should repeat at a high degree of similarity within 

individuals, but have a low degree of similarity across individuals. Although the absence 

of refinement and highly similar scan pattern repetition within individuals seems like a 

“straw man,” it is precisely what is predicted by scanpath theory (Chernyak & Stark, 

2001; Noton & Stark, 1971a, 1971b; Stark & Ellis, 1981; Stark et al., 1980). Repeating 

scan patterns were not repeated at the same high level of similarity across multiple views 

of the same stimulus, and instead increased in similarity with experience while the 

number of dwells composing scan patterns were reduced with experience (see Figures 7, 

10, and 21). This trend occurred in all three experiments. 

Behavior from purely exogenous influences would not be refined, either. The same 

stimulus would always influence scan patterns in nearly (on account of noise in the 

visual system) the same manner, leading to nearly identical repeating scan patterns. 

Again, repeating scan patterns were not repeated nearly identical across multiple views 

of the same stimulus, and instead increased in similarity with experience while the 

number of dwells composing scan patterns were reduced across all three experiments. It 

is unknown if exogenous influences differ across individuals. If exogenous influences 

are assumed to be like reflexes (and similar across individuals) then repeating scan 

patterns on the same stimulus should be similar across individuals. Experiment 3 showed 

that repeating scan patterns from different individuals on the same set of repeating 
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contexts did not reach the same level of similarity as repeating scan patterns from the 

same context within participants (see Figure 27).  

Interestingly, dwell durations did not differ between repeating and unique contexts 

in experiments 1 and 2. Eye movements and memory retrievals operating in parallel 

could explain the absence of this difference in dwell durations. For example, retrieving 

an ordered set of eye movement commands/locations could be retrieved while executing 

eye movements and encoding information at visual locations from an earlier retrieval of 

an ordered set. If contextual information about repeating contexts is stored in memory, 

adding a secondary task should put strain on retrieving the memory. Furthermore, the 

strain on memory could increase dwell durations. When transferring from a single-task 

scenario to a dual-task scenario in experiment 3, repeating configurations resulted in 

greater dwell durations than unique contexts in the dual-task scenario.  

The influences behind scan patterns are clearly difficult to distinguish between with 

observable behavior. Indeed, experiments 1 and 2 show that neither extreme influence 

(endogenous or exogenous) is ever the sole influence of scan patterns. Rather, it is more 

likely that behavior results from influences falling somewhere between these extremes. 

Learning is assumed to be absent in both extremes. Endogenous influences may occur 

after learning had ceased such as a settled on and deliberate strategy, while purely 

exogenous influences are mostly void of learning. Although it would be difficult to 

differentiate between endogenous and exogenous influences, it is possible determine 

differences between statistical and endogenous influences, and statistical and exogenous 

influences. This is because effects of statistical influences are valuable to the process 

associated to learning and adaptation (Blessing & Anderson, 1996; Gray, Sims, Fu, & 

Schoelles, 2006; Haider & Frensch, 1999). As experience with a task environment and a 

paired goal increase, influences may shift from what appear to be exogenous influences 

to what appear to be to be endogenous influences, though may never become a deliberate 

or consciously executed strategy. 

3.2 Contextual Cueing 

The contextual cueing effect was established in only one of the three experiments. 

Moreover, it has been stated that participants require a specific set of instructions to 
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elicit the effect (Lleras & Von Muhlenen, 2004). Perhaps response time is not sensitive 

enough to detect the occurrence of contextual cueing, and researchers need to step back 

and think about what it means to be cued by a search context.  

The key claim from the leading proponents of contextual cueing, Chun and Jiang, is 

that contextual cueing occurs by implicitly learning information associated with a 

context, and that response times capture the benefit of learning (Chun, 2000; Chun & 

Jiang, 1998; Chun & Nakayama, 2000; Jiang & Wagner, 2004; Song & Jiang, 2005). In 

one of three experiments above, contextual cueing was demonstrated using the response 

time dependent variable.  

It can be argued that scan pattern refinement is also implicit. First, theories of 

behavioral refinement maintain that adaptations to the structure of the task environment 

are below the threshold of awareness (Ballard, Hayhoe, Pook, & Rao, 1997; Hayhoe, 

2000). Second, Siegler and Stern (1998) demonstrate that strategies used by German 4th 

graders to solve simple math problems (e.g., 8 + 2 – 8 = ??) unconsciously shift from 

performing all operations to a cancellation strategy (the 8’s cancel leaving 2 as the 

answer). The claim is that scan pattern refinement is synonymous with the unconscious 

strategy shifts discussed by Siegler and Stern, and that the refinement process is 

influenced by statistical factors in the environment.  

Given that scan pattern refinement is an implicit process, it can be argued that 

contextual cueing actually occurred in all three of the experiments. In each of the three 

experiments, the number of dwells was reduced across epochs and the similarity of 

visual scans on repeating contexts increased with experience. Consequently, it may be 

appropriate to redefine contextual cueing as scan pattern refinement above and beyond 

refinement predicted by random visual scanning. Indeed, the newly proposed definition 

would include experiments that do and do not demonstrate a response-time benefit from 

repeating contexts. 

3.3 Functionally Adaptive Scanning Theory  

Repeating scan patterns are scans that are executed in a similar manner across the same 

stimulus, and occur within and between participants. Indeed, all three experiments show 

that within-participant scan patterns from repeating contexts are more similar than 
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within-participant scan pattern similarities from unique contexts.  Moreover, experiment 

3 demonstrated that scan patterns from repeating contexts increase in similarity with 

experience at a greater rate than scan patterns from unique contexts.   

The results from the visual scan refinement analyses of experiments 1 and 2 mostly 

support FAST – two out of three criteria were supported. Experiment 3 fully supported 

FAST, as all three criteria were present (see Table 3, above).  

Surprisingly, all three experiments also showed the benefits of using a small set of 

target locations in the unique contexts. First, the number of dwells to find a target in 

unique contexts was reduced with experience. Second, the similarity of scan patterns 

from unique contexts increased with experience. In one sense, using a small set of target 

locations in the unique contexts is a limitation of all three experiments. FAST predicts 

that if target locations from unique contexts were randomly assigned making the unique 

contexts truly unique, the number of dwells to find the target would not reduce with 

experience, and the similarity of scan patterns from truly unique contexts would not 

increase. In another sense, using a small set of target locations in the unique contexts 

provided a good demonstration of the sensitivity of visual system to the statistical 

structure of the task environment. Indeed, repeating contexts had much more reliable 

information that could be exploited for adaptation (12 locations per repeating context), 

whereas unique contexts had little reliable information (1 location per unique context). 

Indeed, further research into FAST must be done to determine when, why and how scan 

patterns from unique contexts are refined. These are just the first three experiments 

arguing for a theory of functionally adaptive scanning, and indeed much more work 

must be done.  

In its current form, FAST does not take a strong position on the mechanism behind 

the refinement of scan patterns; however, there are some possible directions. Much 

research has addressed how the task environment and human cognitive processes interact 

(for a summary of the research see Gray, Neth, & Schoelles, in press). Anderson’s 

rational analysis (1990) predicts the tradeoff of costs for benefits during human-

environment interactions. Rational analysis is an analytical approach to understanding 

the mediation between endogenous and exogenous influences, and predicts that humans 

behave rationally when the statistical structure of the task environment is considered.  
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Gray’s soft constraints theory (Gray, Sims, Fu, & Schoelles, 2006) is the rational 

analysis framework applied to the 1/3 s level of behavior, or the embodiment level 

(Ballard, Hayhoe, Pook, & Rao, 1997), and can be interpreted to predict the scheduling 

of eye movements, manual motor movements, and memory retrievals during interactive 

behavior. The soft constraints hypothesis provides a direction to understanding how 

repeating scan patterns change and adapt to the task environment.  

It is sometimes important to step back from the study of phenomena to ask about the 

functional importance the phenomena play in achieving our goals outside the laboratory. 

Visual scans usually occur to find information, and anything that increases their 

efficiency has the result of helping us achieve our goals faster. In the non-laboratory 

world, besides decreasing cost in terms of time (and presumably, resources), efficient 

scan patterns may be a key factor in finding a target in time to do something about it. 

Hence, in situations as diverse as piloting a racecar, making a peanut butter and jelly 

sandwich, and batting a ball, the time required for eye movements may be a cost whereas 

achieving the goals of the task may be a benefit.  

Various low-level tradeoffs in interactive behavior may be mediated by the cost of a 

process as measured in its execution time and its past probability of success or benefit. 

This cognitive cost-benefit tradeoff varies with the design of the task environment and 

may serve as a soft constraint (Gray, Sims, Fu, & Schoelles, 2006; Myers & Gray, 

submitted) on scan pattern adaptation. The soft constraints hypothesis is a good 

candidate for understanding scan pattern refinement. It maintains that, from among a set 

of successful sequences of interactive behaviors (or, interactive routines), people tend to 

select routines that minimize performance costs measured in units of time.  

The soft constraints hypothesis is compatible with the views espoused by Ballard 

and Hayhoe (Ballard, Hayhoe, Pook, & Rao, 1997; Hayhoe, 2000) on the implicit, non-

deliberate tradeoffs made between use of memory versus the use of perceptual-motor 

resources. However, whereas Ballard and associates espouse a minimum-memory 

hypothesis such that the central controller acts to conserve memory resources by 

favoring the use of perceptual-motor ones, the soft constraints hypothesis adopts a strict 

cost-benefit accounting where the cost estimates are made based on time measured in 

milliseconds.  
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The soft constraints hypothesis is not a hypothesis of how interactive routines are 

developed, but is instead a hypothesis for selecting between interactive routines and 

choosing the one that is takes the shortest amount of time (Gray, Sims, Fu, & Schoelles, 

2006). It is unlikely that all possible interactive routines are available to select between 

when a new goal is encountered. It is more likely that behavior is gradually refined at the 

1/3 s to 3 s level of analysis to achieve a goal in a minimum amount of time while 

maintaining desired task accuracy. Such a behavior-refinement hypothesis is an 

extension of Haider & Frensch’s information-reduction hypothesis (1999).  

The information-reduction hypothesis holds that people learn, with practice, to 

distinguish between task-relevant and task-redundant information and limit processing to 

task-relevant information. Improvements in task performance reflect an increased 

knowledge about which information has to be processed and which information has to be 

avoided. The task-relevant knowledge is hypothesized to be available to consciousness 

and voluntarily used (Haider & Frensch, 1999). Haider and Frensch show that task-

redundant information is actively ignored at a perceptual, rather than conceptual, level of 

processing. 

Like the information-reduction hypothesis, the behavior-refinement hypothesis 

maintains that repeatedly completing the same goal leads to increased task performance 

through decreased reaction times. Decreased reaction times result from fewer behaviors 

(e.g., eye-movements, mouse-movements, mouse-clicks, etc.) necessary to complete the 

goal. Behaviors that reliably lead to the successful completion of the goal would persist, 

while irrelevant, unreliable, and unnecessary information acquisition would be removed 

from the sequence of behaviors. Eventually, the sequence would become routine and 

executed regularly. Soft constraints hypothesis then predicts that the most efficient 

interactive routine for completing a goal is selected through cognitive cost-benefit 

accounting.  

The behavior-refinement hypothesis adds to the information-reduction hypothesis 

by asserting that behavior is gradually refined through the same, or similar, cognitive 

cost-benefit accounting process suggested by soft constraints hypothesis. Refined and 

regularly used sequences of behaviors then become Gray et al.’s interactive routines. 
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An example supporting the behavior-refinement hypothesis is provided by Myers 

and Gray (submitted). Myers and Gray showed that initial saccades favored salient, 

attention-capturing areas within a visual search task at levels greater than chance. 

Participants were predicted to gradually eliminate saccades to salient areas with 

experience when the target was never located in the salient area. This would effectively 

eliminate the acquisition of unreliable information, and is predicted by the information-

reduction and behavior-refinement hypotheses. Further support for the behavior-

refinement hypothesis comes from a simple mathematical model developed by Myers 

and Gray that accurately predicted the proportion of initial saccades to the salient area as 

a function of noise in the visual system and the time saved by avoiding the area. Indeed, 

the cost of a single dwell-saccade pair that never obtained task-relevant information was 

eliminated from behavior (Myers & Gray, submitted), as predicted by the behavior-

refinement hypothesis. 

The behavior-refinement hypothesis thus predicts that interactive behaviors (e.g., 

eye-movements, mouse-movements, mouse-clicks, etc.) are used in a similar sequence, 

given a specific goal and task environment. Consequently, repeating patterns of 

interactive behavior will occur across repeatedly completing goals in the same task 

environment. Over time, behaviors determined to be useless to completing the goal will 

be removed from the sequence of behaviors, resulting in refined and efficient behavioral 

sequences that maintain accuracy while effectively reducing the goal completion time.  

The behavior-refinement hypothesis asserts that behavior can be refined into 

interactive routines through a strict cost-benefit accounting, as suggested in the soft 

constraints hypothesis. This same cognitive accounting hypothesis has been used to 

predict the selection between interactive routines during interactive behavior (Gray, 

Sims, Fu, & Schoelles, 2006).  

Understanding how FAST, and improved understanding of scan patterns, can be 

applied to real-world issues helps to provide an example of the usefulness of scan pattern 

research. An example of applying understanding based on this research can be provided 

with a training scenario. Imagine training pilots to scan their flight instruments in a 

particular sequence. Differences between scan patterns can be detected in real-time 

during the training scenario allowing trainers to easily determine if the flight instruments 
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were scanned in the instructed order, and if differences in scanning strategies lead to 

different training outcomes, such as missions success and failure. 

3.4 Summary 

The three experiments provide support for FAST. The number of dwells was reduced as 

experience increased with the goal of finding a target among distractors. Scan patterns 

increased in similarity with experience, and scan patterns from repeating contexts 

increased with experience at a faster rate than scan patterns from unique contexts in 

experiment 3. Interestingly, increased cognitive load was shown to disrupt scan pattern 

similarity, and increase dwell durations on items in repeating contexts. These results 

suggest an endogenous component in scan pattern repetition and refinement. Moreover, 

scan patterns from repeating contexts viewed between participants were found to be 

more similar than unique contexts, indicating an exogenous component in scan pattern 

repetition and refinement. Between the poles of exogenous and endogenous influences 

lie statistical influences. Statistical influences, such as stimulus reliability over time, 

were concluded to be the driving forces behind scan pattern refinement and adaptation 

based on the fact that scan patterns were refined with experience.  

The FAST criteria of scan pattern refinement and adaptation can be used as a more 

sensitive metric than trial response time for contextual cueing. Given refinement is an 

implicit process, it can be argued that contextual cueing actually occurred in all three of 

the experiments. Consequently, it may be appropriate to redefine contextual cueing as 

the scan pattern refinement process that results in scan pattern similarities that are 

greater than the similarity between random scan patterns.  
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5. Appendix A: Experiment 1 ANOVA Tables 

Table A1   
Mixed Analysis of Variance for Training-phase Gaze Control 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.136 0.715 0.004 
Context * Task 1 0.512 0.479 0.015 
Error(Context) 34    
Block  4.683 2.75 0.023 0.075 
Block * Task 4.683 1.764 0.128 0.049 
Error(Block) 159.205    
Context * Block 8.201 0.892 0.526 0.026 
Context * Block * Task 8.201 1.068 0.386 0.03 
Error(Context*Block) 278.82       

Between subjects 
Task  1 12.913 0.001 0.275 
Error   34       
Computed using alpha = .05    
 

 

Table A2   
Mixed Analysis of Variance for Training-phase Accuracy 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.388 0.537 0.01 
Context * Task 1 0.524 0.473 0.014 
Error(Context) 38    
Block  9.591 1.105 0.358 0.028 
Block * Task 9.591 1.019 0.425 0.026 
Error(Block) 364.442    
Context * Block 11.696 0.671 0.776 0.017 
Context * Block * Task 11.696 1.358 0.185 0.035 
Error(Context*Block) 444.462       

Between subjects 
Task  1 2.11 0.155 0.053 
Error   38       
Computed using alpha = .05    
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Table A3   
Mixed Analysis of Variance for Training-phase Response Time 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.779 0.383 0.021 
Context * Task  1 2.231 0.144 0.057 
Error(Context)  37    
Block  4.512 25.923 0.000 0.412 
Block * Task  4.512 0.674 0.629 0.018 
Error(Block)  166.952    
Context * Block  8.549 1.537 0.138 0.040 
Context * Block * Task  8.549 1.217 0.286 0.032 
Error(Context*Block)   316.301       

Between subjects 
Task  1 1.756 0.193 0.045 
Error   38       
Computed using alpha = .05     
 

 

Table A4      
Mixed Analysis of Variance for Response Times using only Epochs 1 and 4 from the 
Experiment 1 Training Phaase 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.193 0.663 0.005 
Context * Task  1 2.668 0.111 0.066 
Error(Context)  38    
Epoch  1 19.015 0 0.334 
Epoch * Task  1 0.169 0.683 0.004 
Error(Epoch)  38    
Context * Epoch  1 4.602 0.038 0.108 
Context * Epoch * Task 1 0.044 0.836 0.001 
Error(Context*Epoch)   38       

Between subjects 
Task  1 1.003 0.323 0.026 
Error   38       
Computed using alpha = .05     
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Table A5    
Mixed Analysis of Variance for Testing-phase Gaze Control 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.083 0.775 0.002 
Context * Task 1 0.518 0.476 0.015 
Error(Context) 35    
Block  2.882 0.231 0.868 0.007 
Block * Task 2.882 0.146 0.926 0.004 
Error(Block) 100.887    
Context * Block 5.218 0.518 0.770 0.015 
Context * Block * Task 5.218 1.039 0.397 0.029 
Error(Context*Block) 182.645       

Between subjects 
Task  1 7.852 0.008 0.183 
Error   34       
Computed using alpha = .05    
 

Table A6   
Mixed Analysis of Variance for Testing-phase Response Time 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 1.4073 0.2431 0.0366 
Context * Task 1 2.1974 0.1467 0.0561 
Error(Context) 37    
Block  4.316 2.5598 0.0367 0.0647 
Block * Task 4.316 1.0217 0.4010 0.0269 
Error(Block)  159.693    
Context * Block 4.897 0.9289 0.4621 0.0245 
Context * Block * Task 4.897 0.9621 0.4413 0.0253 
Error(Context*Block) 181.185    

Between subjects 
Task  1 1.113 0.298 0.029 
Error   37       
Computed using alpha = .05    
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Table A7   
Mixed Analysis of Variance for Testing-phase Accuracy 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.001 0.976 0.000 
Context * Task 1 1.867 0.180 0.048 
Error(Context) 37    
Block  9 0.750 0.663 0.020 
Block * Task 9 1.353 0.209 0.035 
Error(Block) 333    
Context * Block 9 0.710 0.700 0.019 
Context * Block * Task 9 1.568 0.123 0.041 
Error(Context*Block) 333       

Between subjects 
Task  1 2.128 0.153 0.054 
Error   38       
Computed using alpha = .05    
 

 

Table A8  
Mixed Analysis of Variance for Training-phase Dwell Number 
      
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 3.1785 0.0838 0.0879 
Context * Task  1 0.2439 0.6247 0.0073 
Error(Context)  33    
Block  8.929 24.0301 0.0000 0.4214 
Block * Task  8.929 0.8234 0.5942 0.0243 
Error(Block)  294.6678    
Context * Block  10.788 1.3477 0.1978 0.0392 
Context * Block * Task  10.788 1.6170 0.0936 0.0467 
Error(Context*Block)   355.9896       
      

Between subjects 
Task  1 1.392 0.247 0.040 
Error   33       
Computed using alpha = .05    
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Table A9  
Mixed Analysis of Variance for Training-phase Re-dwell Number 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.3303 0.5694 0.0099 
Context * Task  1 0.0694 0.7939 0.0021 
Error(Context)  33    
Block  7.475 2.1803 0.0330 0.0620 
Block * Task  7.475 0.8994 0.5124 0.0265 
Error(Block)  246.659    
Context * Block  8.227 1.0491 0.3999 0.0308 
Context * Block * Task  8.227 1.0791 0.3780 0.0317 
Error(Context*Block)  271.491    

Between subjects 
Task  1 1.392 0.247 0.040 
Error   33       
Computed using alpha = .05     
 

Table A10  
Mixed Analysis of Variance of Training-phase Scan Patterns Using Normalized 
Similarity Index  
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 111.725 0.0000 0.7720 
Context * Task 1 0.2814 0.5994 0.0085 
Error(Context) 33    
Epoch  2.083 54.7490 0.0000 0.6239 
Epoch * Task 2.083 0.6803 0.5156 0.0202 
Error(Epoch) 68.751    
Context * Epoch 3.000 1.8873 0.1366 0.0541 
Context * Epoch * Task 3.000 0.3453 0.7926 0.0104 
Error(Context*Epoch) 99.000       

Between subjects 
Task  1 0.346 0.561 0.010 
Error   33       
Computed using alpha = .05    
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Table A11  
Mixed Analysis of Variance of Training-phase Step-wise Scan Pattern Comparisons 
using Normalized Similarity Index 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 5.2724 0.0280 0.1343 
Context * Task 1 0.3510 0.5575 0.0102 
Error(Context) 34    
Comparison 4 0.1738 0.9515 0.0051 
Comparison * Task 4 0.7872 0.5354 0.0226 
Error(Comparison) 34    
Context * Comparison 4 0.4173 0.7959 0.0121 
Context * Comparison * Task 4 0.1352 0.9691 0.0040 
Error(Context*Comparison) 136    

Between subjects 
Task  1 0.524 0.474 0.015 
Error   34       
Computed using alpha = .05     
 

Table A12  
Mixed Analysis of Variance for Training-phase Dwell Duration 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 1.8453 0.1835 0.0530 
Context * Task  1 0.0056 0.9407 0.0002 
Error(Context)  33    
Block  6.936 4.8880 0.0000 0.1290 
Block * Task  6.936 1.4722 0.1787 0.0427 
Error(Block)  228.9041    
Context * Block  10.772 1.0207 0.4268 0.0300 
Context * Block * Task 10.772 0.8066 0.6310 0.0239 
Error(Context*Block) 355.4801    

Between subjects 
Task  1 0.001 0.980 0.000 
Error   33       
Computed using alpha = .05    
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6. Appendix B: Experiment 2 ANOVA Tables 

Table B1    
Mixed Analysis of Variance for Gaze Control    
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.324 0.573 0.009 
Context * Task 1 0.000 0.988 0.000 
Error(Context) 35    
Block  5.253 0.991 0.427 0.028 
Block * Task 5.253 1.184 0.318 0.033 
Error(Block) 183.855    
Context * Block 9.045 0.999 0.441 0.028 
Context * Block * Task 9.045 1.513 0.142 0.041 
Error(Context*Block) 316.577    

Between subjects 
Task  1 0.041 0.841 0.001 
Error   35       
Computed using alpha = .05    
 

 

Table B2  
Mixed Analysis of Variance for Response Accuracy   
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.000 0.997 0.000 
Context * Task 1 0.018 0.895 0.000 
Error(Context) 37    
Block  10.521 1.206 0.283 0.032 
Block * Task 10.521 1.435 0.159 0.037 
Error(Block) 389.290    
Context * Block 10.897 0.699 0.738 0.019 
Context * Block * Task 10.897 1.414 0.164 0.037 
Error(Context*Block) 403.191    

Between subjects 
Task  1 0.501 0.484 0.013 
Error   37       
Computed using alpha = .05    
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Table B3    
Analysis of Variance for Response Time     
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.115 0.736 0.003 
Context * Task  1 1.296 0.263 0.036 
Error(Context)  35    
Block  7.306 35.731 0.000 0.50517 
Block * Task  7.306 0.711 0.669 0.020 
Error(Block)  255.698    
Context * Block  9.903 0.567 0.839 0.016 
Context * Block * Task 9.903 0.756 0.670 0.021 
Error(Context*Block) 346.608    

Between subjects 
Task  1 2.037 0.162 0.055 
Error   35       
Computed using alpha = .05     
 

 

B4      
Mixed Analysis of Variance for Response Times using only Epochs 1 and 4 from the 
Experiment 2 Training Phaase 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.094 0.761 0.003 
Context * Task 1 1.844 0.183 0.05 
Error(Context) 35    
Epoch  1 109.584  < 0.001 0.758 
Epoch * Task  1 0.973 0.331 0.027 
Error(Epoch)  35    
Context * Epoch 1 1.326 0.257 0.036 
Context * Epoch * Task 1 2.394 0.131 0.064 
Error(Context*Epoch) 35       

Between subjects 
Task  1 1.79 0.19 0.049 
Error   35       
Computed using alpha = .05     
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Table B5  
Analysis of Variance for Gaze Control   
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.003 0.959 0.000 
Context * Task 1 0.792 0.380 0.024 
Error(Context) 32    
Block  5.958 2.241 0.041 0.065 
Block * Task 5.958 1.013 0.418 0.031 
Error(Block) 190.645    
Context * Block 5.570 0.715 0.628 0.022 
Context * Block * Task 5.570 1.634 0.146 0.049 
Error(Context*Block) 178.255    

Between subjects 
Task  1 0.003 0.960 0.000 
Error   32       
Computed using alpha = .05    
 

 

Table B6   
Mixed Analysis of Variance for Response Time from the testing phase of experiment 2. 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.034 0.854 0.001 
Context * Task 1 0.032 0.859 0.001 
Error(Context) 36    
Block  5.328 5.868 0.000 0.140 
Block * Task 5.328 0.428 0.840 0.012 
Error(Block)  191.800    
Context * Block 6.185 1.320 0.248 0.035 
Context * Block * Task 6.185 0.707 0.649 0.019 
Error(Context*Block) 222.655    

Between subjects 
Task  1 0.021 0.886 0.001 
Error   36       
Computed using alpha = .05     
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Table B7  
Mixed Analysis of Variance for Accuracy in testing phase of experiment 2 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.065 0.801 0.002 
Context * Task 1 0.031 0.862 0.001 
Error(Context) 36    
Block  9 2.237 0.020 0.059 
Block * Task 9 0.936 0.494 0.025 
Error(Block) 324    
Context * Block 9 2.259 0.018 0.059 
Context * Block * Task 9 0.891 0.534 0.024 
Error(Context*Block) 324    

Between subjects 
Task  1 3.480 0.070 0.088 
Error   36       
Computed using alpha = .05    
 

 

Table B8  
Mixed Analysis of Variance for Number of Dwells in training phase of experiment 2 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.4850 0.4908 0.0137 
Context * Task  1 0.6095 0.4402 0.0171 
Error(Context)  35    
Block  4.393 12.0031 0.0000 0.2554 
Block * Task  4.393 0.9667 0.4329 0.0269 
Error(Block)  153.7621    
Context * Block  9.969 0.9856 0.4554 0.0274 
Context * Block * Task  9.969 0.9564 0.4813 0.0266 
Error(Context*Block)   348.9042       
      

Between subjects 
Task  1 0.137 0.714 0.004 
Error   35       
Computed using alpha = .05     
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Table B9  
Mixed Analysis of Variance for Re-dwells from the training phase of experiment 2 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.1384 0.7121 0.0039 
Context * Task  1 0.5914 0.4470 0.0166 
Error(Context)  35    
Block  7.370 3.0586 0.0035 0.0804 
Block * Task  7.370 1.5862 0.1356 0.0434 
Error(Block)  257.954    
Context * Block  19.000 0.6336 0.8821 0.0178 
Context * Block * Task 19.000 0.6874 0.8335 0.0193 
Error(Context*Block) 665    

Between subjects 
Task  1 0.000 0.987 0.000 
Error   35       
Computed using alpha = .05     
 

 

Table B10  
Mixed Analysis of Variance for Normalized Similarity Index from training phase of experiment 2 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 106.0805 0.0000 0.7683 
Context * Task 1 0.2817 0.5992 0.0087 
Error(Context) 35    
Epoch  2.181 36.1317 0.0000 0.5303 
Epoch * Task 2.181 0.3203 0.7455 0.0099 
Error(Epoch) 69.788    
Context * Epoch 3.000 0.7955 0.4993 0.0243 
Context * Epoch * Task 3.000 1.0998 0.3531 0.0332 
Error(Context*Epoch) 99.000    

Between subjects 
Task  1 1.616 0.213 0.048 
Error   35       
Computed using alpha = .05    
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Table B11  
Mixed Analysis of Variance for Step-wise Comparisons of Scan Patterns 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 4.6940 0.0372 0.1183 
Context * Task 1 0.4313 0.5156 0.0122 
Error(Context) 35    
Comparison 3 0.2185 0.8836 0.0062 
Comparison * Task 3 1.1685 0.3254 0.0323 
Error(Comparison) 105.138    
Context * Comparison 4 0.2019 0.9370 0.0057 
Context * Comparison * Task 4 1.2243 0.3033 0.0338 
Error(Context*Comparison) 140    

Between subjects 
Task  1 0.638 0.430 0.018 
Error   35       
Computed using alpha = .05     
 

 

Table B12  
Analysis of Variance for Dwell Durations from experiment 2 training phase. 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 1.0573 0.3109 0.0293 
Context * Task  1 0.0000 0.9960 0.0000 
Error(Context)  35    
Block  6.925 4.5221 0.0001 0.1144 
Block * Task  6.925 0.7023 0.6685 0.0197 
Error(Block)  242.379    
Context * Block  8.814 0.5472 0.8361 0.0154 
Context * Block * Task  8.814 0.7218 0.6859 0.0202 
Error(Context*Block)  308.498    

Between subjects 
Task  1 0.274 0.604 0.008 
Error   35       
Computed using alpha = .05     
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7. Appendix C: Experiment 3 ANOVA Tables 

Table C1      
Mixed Analysis of Variance on letter classification task accuracy in experiment 3 between 
dual-dual and dual-single phase-1.  

      
Source   df F Sig. ŋ 

Within subjects 
Block  7.916 1.974 0.052 0.076 
Block * Transfer Condition  7.916 0.341 0.948 0.014 
Block * Configruation group  15.833 0.689 0.802 0.054 
Block * Transfer Condition  *  Configuration group 15.833 1.356 0.169 0.101 
Error (Block)  189.994    

Between subjects 
Transfer Condition  1 1.045 0.317 0.042 
Configuration-group  2 0.352 0.707 0.028 
Transfer Condition * Configuration-group 2 1.397 0.267 0.104 
Error   24       

 

Table C2      
Mixed Analysis of Variance on letter classification task accuracy in epxeriment 3 between 
dual-dual and single-dual phase-1.  
      

Source   df F Sig. ŋ 
Within subjects 

Block  14 1.032 0.421 0.045 
Block * Transfer Condition  14 1.357 0.173 0.058 
Block * Configruation group  28 1.242 0.19 0.101 
Block * Transfer Condition  *  Configruation group 28 1.188 0.239 0.097 
Error (Block)  308    

Between subjects 
Transfer Condition  1 0.532 0.474 0.024 
Configuration-group  2 0.346 0.711 0.030 
Transfer Condition * Configuration-group 2 0.340 0.715 0.030 
Error   22       
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Table C3      
Mixed Analysis of Variance on letter classification task accuracy in epxeriment 3 between 
dual-single and single-dual phase-1 and 2.  
      

Source   df F Sig. ŋ 
Within subjects 

Block  14 2.119 0.011 0.081 
Block * Transfer 
Condition  14 0.77 0.702 0.031 
Block * Configruation 
group  28 1.015 0.447 0.078 
Block * Transfer Condition  *  Configruation group 28 1.277 0.162 0.096 
Error (Block)  336    

Between subjects 
Transfer Condition  1 0.001 0.974 0.000 
Configuration-group  2 0.102 0.903 0.008 
Transfer Condition * Configuration-group 2 0.099 0.906 0.008 
Error   24       
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Table C4      
Mixed Analysis of Variance on Trial Accuracy  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 11.142 0.002 0.210 
Context * Transfer Condition  3 1.575 0.210 0.101 
Context * Configuration-group  2 1.683 0.198 0.074 
Context * Transfer Condition  *  
Configuration-group 6 1.166 0.343 0.143 
Error(Context)  42    
Block  10.373 3.150 0.001 0.070 
Block * Transfer Condition  87.000 2.185 0.000 0.135 
Block * Configuration-group  20.747 1.217 0.232 0.055 
Block * Transfer Condition  *  
Configuration-group 62.240 1.160 0.202 0.142 
Error(Block)  435.682    
Context * Block  14.741 0.636 0.843 0.015 
Context * Block * Transfer 
Condition  44.222 1.065 0.362 0.071 
Context * Block * 
Configuration-group  29.482 1.215 0.203 0.055 
Context * Block * Transfer Condition  *  
Configuration-group 88.445 0.977 0.542 0.122 
Error(Context * Block)  619.115    

Between subjects 
Transfer Condition  3 2.530 0.070 0.153 
Configuration-group  2 1.792 0.179 0.079 
Transfer Condition * 
Configuration-group  6 0.635 0.701 0.083 
Error   42       
Computed using alpha = .05      
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Table C5      
Mixed Analysis of Variance for Workload Effects on Trial Accuracy  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 4.261 0.044 0.080 
Context * Load  1 3.282 0.076 0.063 
Context * Configuration-group  2 0.801 0.455 0.032 
Context * Load  *  Configuration-
group  2 2.448 0.097 0.091 
Error(Context)  49    
Block  5.944 4.249 0.000 0.080 
Block * Load  5.944 1.967 0.071 0.039 
Block * Configuration-group  11.889 1.219 0.270 0.047 
Block * Load  *  Configuration-
group  11.889 1.570 0.100 0.060 
Error(Block)  291.269    
Context * Block  9.570 0.449 0.916 0.009 
Context * Block * Load  9.570 1.014 0.429 0.020 
Context * Block * Configuration-
group  19.141 1.181 0.268 0.046 
Context * Block * Load  *  
Configuration-group  19.141 0.713 0.807 0.028 
Error(Context * Block)  468.949    

Between subjects 
Load  1 15.031 0.000 0.235 
Configuration-group  2 1.663 0.200 0.064 
Load * Configuration-group  2 0.403 0.670 0.016 
Error   49       
Computed using alpha = .05      
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Table C6      
Mixed Analysis of Variance for Workload Effects on Trial Accuracy between Single-Single and 
Single-Dual Transfer Conditions in Phase 1  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 1.332 0.261 0.060 
Context * Transfer Condition  1 0.243 0.627 0.011 
Context * Configuration-group  2 0.371 0.695 0.034 
Context * Transfer Condition  *  
Configuration-group  2 0.882 0.429 0.077 
Error(Context)  21    
Block  3.064 0.778 0.513 0.036 
Block * Transfer Condition  3.064 0.794 0.504 0.036 
Block * Configuration-group  6.128 1.441 0.212 0.121 
Block * Transfer Condition  *  
Configuration-group  6.128 1.239 0.298 0.106 
Error(Block)  64.343    
Context * Block  5.266 1.477 0.200 0.066 
Context * Block * Transfer 
Condition  5.266 0.362 0.882 0.017 
Context * Block * Configuration-
group  10.532 0.817 0.618 0.072 
Context * Block * Transfer 
Condition  *  Configuration-group  10.532 1.606 0.110 0.133 
Error(Context * Block)  110.584    

Between subjects 
Transfer Condition  1 0.269916239 0.609 0.013 
Configuration-group  2 1.390792647 0.271 0.117 
Transfer Condition * Configuration-
group  2 3.026371968 0.070 0.224 
Error   21       
Computed using alpha = .05      
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Table C7      
Mixed Analysis of Variance for WorkTransfer Condition Effects on Trial Accuracy between 
Dual-Single and Dual-Dual  Transfer Conditions in Phase 1  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 7.198 0.013 0.238 
Context * Transfer Condition  1 0.800 0.380 0.034 
Context * Configuration-group  2 0.544 0.588 0.045 
Context * Transfer Condition  *  
Configuration-group  2 0.560 0.579 0.046 
Error(Context)  23    
Block  5.322 4.721 0.000 0.170 
Block * Transfer Condition  5.322 2.131 0.062 0.085 
Block * Configuration-group  10.645 1.950 0.041 0.145 
Block * Transfer Condition  *  
Configuration-group  10.645 1.154 0.327 0.091 
Error(Block)  122.417    
Context * Block  14 0.742 0.732 0.031 
Context * Block * Transfer Condition  14 1.550 0.092 0.063 
Context * Block * Configuration-
group  28 0.946 0.547 0.076 
Context * Block * Transfer Condition  
*  Configuration-group  28 0.871 0.658 0.070 
Error(Context * Block)  322    

Between subjects 
Transfer Condition  1 1.635847324 0.214 0.066 
Configuration-group  2 1.165550659 0.329 0.092 
Transfer Condition * Configuration-
group  2 0.405297072 0.671 0.034 
Error   23       
Computed using alpha = .05      

 



 

 140 

 

Table C8      
Mixed Analysis of Variance for Transfer Effects on Trial Accuracy between Single-Single and 
Single-Dual Transfer Conditions in Phase 2  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 3.717 0.068 0.157 
Context * Transfer Condition  1 0.003 0.959 0.000 
Context * Configuration-group  2 5.529 0.012 0.356 
Context * Transfer Condition  *  
Configuration-group  2 3.246 0.060 0.245 
Error(Context)  20    
Block  4.780 0.770 0.569 0.037 
Block * Transfer Condition  4.780 1.123 0.353 0.053 
Block * Configuration-group  9.559 1.731 0.088 0.148 
Block * Transfer Condition  *  
Configuration-group  9.559 1.449 0.174 0.127 
Error(Block)  95.593    
Context * Block  6.035 1.158 0.333 0.055 
Context * Block * Transfer Condition  6.035 1.127 0.351 0.053 
Context * Block * Configuration-
group  12.071 1.212 0.282 0.108 
Context * Block * Transfer Condition  
*  Configuration-group  12.071 1.116 0.354 0.100 
Error(Context * Block)  120.710    

Between subjects 
Transfer Condition  1 2.78882824 0.111 0.122 
Configuration-group  2 1.531968445 0.240 0.133 
Transfer Condition * Configuration-
group  2 0.767866244 0.477 0.071 
Error   20       
Computed using alpha = .05      
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Table C9      
Mixed Analysis of Variance for Transfer Effects on Trial Accuracy between Dual-Single and 
Single-Single Transfer Conditions Phase 2  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 3.090 0.093 0.123 
Context * Transfer Condition  1 0.006 0.940 0.000 
Context * Configuration-group  2 0.379 0.689 0.033 
Context * Transfer Condition  *  
Configuration-group  2 2.514 0.104 0.186 
Error(Context)  22    
Block  5.971 1.103 0.364 0.048 
Block * Transfer Condition  5.971 1.036 0.405 0.045 
Block * Configuration-group  11.942 0.705 0.744 0.060 
Block * Transfer Condition  *  
Configuration-group  11.942 0.722 0.727 0.062 
Error(Block)  131.367    
Context * Block  14 0.841 0.624 0.037 
Context * Block * Transfer Condition  14 0.605 0.861 0.027 
Context * Block * Configuration-
group  28 1.021 0.440 0.085 
Context * Block * Transfer Condition  
*  Configuration-group  28 0.753 0.815 0.064 
Error(Context * Block)  308    

Between subjects 
Transfer Condition  1 1.751934608 0.199 0.074 
Configuration-group  2 0.774261174 0.473 0.066 
Transfer Condition * Configuration-
group  2 1.020419243 0.377 0.085 
Error   22       
Computed using alpha = .05      
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Table C10      
Mixed Analysis of Variance on Trial Response Time  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 0.563 0.457 0.013 
Context * Transfer Condition  3 1.030 0.389 0.066 
Context * Configuration-group  2 1.268 0.291 0.054 
Context * Transfer Condition  *  
Configuration-group  6 0.785 0.586 0.097 
Error(Context)  44    
Block  3.783 14.119 0.000 0.243 
Block * Transfer Condition  11.349 5.498 0.000 0.273 
Block * Configuration-group  7.566 0.888 0.524 0.039 
Block * Transfer Condition  *  
Configuration-group  22.698 0.979 0.494 0.118 
Error(Block)  166.451    
Context * Block  2.475 2.346 0.089 0.051 
Context * Block * Transfer Condition  7.425 1.162 0.330 0.073 
Context * Block * Configuration-group  4.950 1.636 0.157 0.069 
Context * Block * Transfer Condition  *  
Configuration-group  14.849 1.358 0.182 0.156 
Error(Context * Block)  108.894    

Between subjects 
Transfer Condition  3 5.598 0.002 0.276 
Configuration-group  2 0.911 0.410 0.040 
Transfer Condition * Configuration-group  6 0.543 0.773 0.069 
Error   44       
Computed using alpha = .05      
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Table C11      
Mixed Analysis of Variance on Trial Response Time for Single-single Epochs 1 and 4 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.495 0.496 0.043 
Context * Configuration-group  2 1.457 0.275 0.209 
Error(Context)  11    
Epoch  1 83.913 < 0.001 0.884 
Epoch * Configuration-group  2 1.602 0.245 0.226 
Error(Epoch)  11    
Context * Epoch  1 0.307 0.591 0.027 
Context * Epoch * Configuration-group 2 0.087 0.917 0.016 
Error(Context * Epoch)  11    

Between subjects 
Configuration-group  2 0.61 0.561 0.1 
Error   11       
Computed using alpha = .05      

 

Table C12      
Mixed Analysis of Variance on Trial Response Time for Dual-dual Epochs 1 and 4 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.392 0.544 0.034 
Context * Configuration-group 2 0.394 0.684 0.067 
Error(Context) 11    
Epoch  1 37.554 < 0.001 0.773 
Epoch * Configuration-group 2 1.432 0.28 0.207 
Error(Epoch)  11    
Context * Epoch 1 0.353 0.565 0.031 
Context * Epoch * Configuration-
group 2 0.615 0.558 0.101 
Error(Context * Epoch) 11    

Between subjects 
Configuration-group 2 2.772 0.106 0.335 
Error   11       
Computed using alpha = .05     
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Table C13      
Mixed Analysis of Variance for Workload Effects on Trial Response Time from experiment 3 

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 0.003 0.960 0.000 
Context * Load  1 1.035 0.314 0.020 
Context * Configuration-group  2 0.567 0.571 0.022 
Context * Load  *  Configuration-
group  2 0.109 0.897 0.004 
Error(Context)  50    
Block  1.696 14.994 0.000 0.231 
Block * Load  1.696 4.649 0.016 0.085 
Block * Configuration-group  3.392 1.098 0.359 0.042 
Block * Load  *  Configuration-
group  3.392 1.050 0.380 0.040 
Error(Block)  84.804    
Context * Block  1.584 2.343 0.114 0.045 
Context * Block * Load  1.584 1.333 0.266 0.026 
Context * Block * Configuration-
group  3.167 1.546 0.207 0.058 
Context * Block * Load  *  
Configuration-group  3.167 1.411 0.245 0.053 
Error(Context * Block)  79.180    

Between subjects 
Load  1 46.790 0.000 0.483 
Configuration-group  2 2.645 0.081 0.096 
Load * Configuration-group  2 0.148 0.863 0.006 
Error   50       
Computed using alpha = .05      
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Table C14      
Mixed Analysis of Variance for Workload Effects on Trial Response Time between Single-
Single and Single-Dual  Transfer Conditions in Phase 1  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 1.963 0.176 0.085 
Context * Transfer Condition  1 0.060 0.809 0.003 
Context * Configuration-group  2 0.951 0.402 0.083 
Context * Transfer Condition  *  
Configuration-group  2 1.646 0.217 0.135 
Error(Context)  21    
Block  7.569 12.351 0.000 0.370 
Block * Transfer Condition  7.569 0.725 0.662 0.033 
Block * Configuration-group  15.137 0.877 0.592 0.077 
Block * Transfer Condition  *  
Configuration-group  15.137 0.542 0.915 0.049 
Error(Block)  158.939    
Context * Block  6.507 1.821 0.093 0.080 
Context * Block * Transfer Condition  6.507 1.484 0.183 0.066 
Context * Block * Configuration-group  13.014 0.773 0.688 0.069 
Context * Block * Transfer Condition  *  
Configuration-group  13.014 0.783 0.677 0.069 
Error(Context * Block)  136.652    

Between subjects 
Transfer Condition  1 0.019 0.891 0.001 
Configuration-group  2 1.740 0.200 0.142 
Transfer Condition * Configuration-group  2 0.041 0.960 0.004 
Error   21       
Computed using alpha = .05      
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Table C15      
Mixed Analysis of Variance for WorkTransfer Condition Effects on Trial Response Time 
between Dual-Single and Dual-Dual  Transfer Conditions in Phase 1  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 0.020 0.889 0.001 
Context * Transfer Condition  1 0.840 0.369 0.037 
Context * Configuration-group  2 0.624 0.545 0.054 
Context * Transfer Condition  *  
Configuration-group  2 1.417 0.264 0.114 
Error(Context)  22    
Block  1.730 9.147 0.001 0.294 
Block * Transfer Condition  1.730 2.613 0.093 0.106 
Block * Configuration-group  3.461 1.637 0.191 0.130 
Block * Transfer Condition  *  
Configuration-group  3.461 1.106 0.364 0.091 
Error(Block)  38.069    
Context * Block  1.674 2.112 0.142 0.088 
Context * Block * Transfer Condition  1.674 1.142 0.322 0.049 
Context * Block * Configuration-group  3.349 1.718 0.175 0.135 
Context * Block * Transfer Condition  
*  Configuration-group  3.349 1.461 0.239 0.117 
Error(Context * Block)  36.837    

Between subjects 
Transfer Condition  1 1.594413799 0.220 0.068 
Configuration-group  2 0.315929446 0.732 0.028 
Transfer Condition * Configuration-
group  2 0.254437043 0.778 0.023 
Error   22       
Computed using alpha = .05      
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Table C16      
Mixed Analysis of Variance for Transfer Effects on Response Time between Single-Single and 
Single-Dual Transfer Conditions in Phase 2 

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 1.374 0.255 0.064 
Context * Transfer Condition  1 0.336 0.569 0.016 
Context * Configuration-group  2 0.418 0.664 0.040 
Context * Transfer Condition  *  
Configuration-group  2 2.121 0.146 0.175 
Error(Context)  20    
Block  7.280 1.764 0.096 0.081 
Block * Transfer Condition  7.280 1.337 0.235 0.063 
Block * Configuration-group  14.561 0.795 0.678 0.074 
Block * Transfer Condition  *  
Configuration-group  14.561 0.797 0.676 0.074 
Error(Block)  145.610    
Context * Block  14 0.745 0.728 0.036 
Context * Block * Transfer Condition  14 1.372 0.166 0.064 
Context * Block * Configuration-group  28 1.126 0.307 0.101 
Context * Block * Transfer Condition  *  
Configuration-group  28 1.012 0.453 0.092 
Error(Context * Block)  280    

Between subjects 
Transfer Condition  1 15.303 0.001 0.433 
Configuration-group  2 0.284 0.755 0.028 
Transfer Condition * Configuration-group  2 0.171 0.844 0.017 
Error   20       
Computed using alpha = .05      
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Table C17      
Mixed Analysis of Variance for Transfer Effects on Trial Accuracy between Dual-Single and 
Single-Single  Transfer Conditions in Phase 2  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 0.270 0.609 0.012 
Context * Transfer Condition  1 0.029 0.867 0.001 
Context * Configuration-group  2 0.460 0.637 0.040 
Context * Transfer Condition  *  
Configuration-group  2 1.920 0.170 0.149 
Error(Context)  22    
Block  7.541 1.656 0.117 0.070 
Block * Transfer Condition  7.541 0.972 0.457 0.042 
Block * Configuration-group  15.081 0.932 0.531 0.078 
Block * Transfer Condition  *  
Configuration-group  15.081 0.519 0.928 0.045 
Error(Block)  165.894    
Context * Block  14 0.972 0.482 0.042 
Context * Block * Transfer Condition  14 0.367 0.983 0.016 
Context * Block * Configuration-group  28 0.820 0.730 0.069 
Context * Block * Transfer Condition  *  
Configuration-group  28 0.843 0.698 0.071 
Error(Context * Block)  308    

Between subjects 
Transfer Condition  1 1.203 0.285 0.052 
Configuration-group  2 0.493 0.617 0.043 
Transfer Condition * Configuration-group  2 0.053 0.948 0.005 
Error   22       
Computed using alpha = .05      
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Table C18      
Mixed Analysis of Variance on the number of dwells from experiment 3 

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 3.266 0.078 0.075 
Context * Transfer Condition  3 0.216 0.885 0.016 
Context * Configuration-group  2 1.856 0.169 0.085 
Context * Transfer Condition  *  
Configuration-group  6 1.860 0.112 0.218 
Error(Context)  40    
Block  7.861 28.660 0.000 0.417 
Block * Transfer Condition  23.584 3.058 0.000 0.187 
Block * Configuration-group  15.722 0.654 0.836 0.032 
Block * Transfer Condition  *  
Configuration-group  47.167 0.745 0.890 0.101 
Error(Block)  314.448    
Context * Block  14.309 1.647 0.061 0.040 
Context * Block * Transfer Condition  42.926 1.118 0.284 0.077 
Context * Block * Configuration-group  28.617 1.143 0.280 0.054 
Context * Block * Transfer Condition  *  
Configuration-group  85.852 0.835 0.850 0.111 
Error(Context * Block)  572.349    

Between subjects 
Transfer Condition  3 3.383 0.027 0.202 
Configuration-group  2 1.125 0.335 0.053 
Transfer Condition * Configuration-
group  6 0.841 0.546 0.112 
Error   40       
Computed using alpha = .05      
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Table C19      
Mixed Analysis of Variance for Workload Effects on the number of dwells from experiment 3  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 1.506 0.226 0.032 
Context * Load  1 0.018 0.893 0.000 
Context * Configuration-group  2 3.074 0.056 0.118 
Context * Load  *  Configuration-
group  2 4.335 0.019 0.159 
Error(Context)  46    
Block  6.590 21.589 < 0.001 0.319 
Block * Load  6.590 3.608 0.001 0.073 
Block * Configuration-group  13.180 0.787 0.675 0.033 
Block * Load  *  Configuration-
group  13.180 0.572 0.878 0.024 
Error(Block)  6.590    
Context * Block  8.981 2.520 0.008 0.052 
Context * Block * Load  8.981 1.188 0.301 0.025 
Context * Block * Configuration-
group  17.962 1.197 0.260 0.049 
Context * Block * Load  *  
Configuration-group  17.962 0.814 0.684 0.034 
Error(Context * Block)  413.125    

Between subjects 
Load  1 21.781 0.000 0.321 
Configuration-group  2 0.949 0.394 0.040 
Load * Configuration-group  2 1.557 0.222 0.063 
Error   46       
Computed using alpha = .05      
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Table C20      
Mixed Analysis of Variance for Workload Effects on Number of Dwells between Single-Single 
and Single-Dual Transfer Conditions from Phase 1  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 0.507 0.486 0.027 
Context * Transfer Condition  1 0.011 0.919 0.001 
Context * Configuration-group  2 1.644 0.221 0.154 
Context * Transfer Condition  *  
Configuration-group  2 2.355 0.123 0.207 
Error(Context)  18    
Block  5.395 6.785 0.000 0.274 
Block * Transfer Condition  5.395 0.441 0.832 0.024 
Block * Configuration-group  10.791 0.449 0.927 0.048 
Block * Transfer Condition  *  
Configuration-group  10.791 0.799 0.639 0.082 
Error(Block)  97.117    
Context * Block  14 1.141 0.323 0.060 
Context * Block * Transfer Condition  14 0.939 0.517 0.050 
Context * Block * Configuration-group  28 0.621 0.934 0.065 
Context * Block * Transfer Condition  *  
Configuration-group  28 0.572 0.961 0.060 
Error(Context * Block)  252    

Between subjects 
Transfer Condition  1 0.296 0.593 0.016 
Configuration-group  2 0.188 0.830 0.020 
Transfer Condition * Configuration-group  2 0.262 0.773 0.028 
Error   18       
Computed using alpha = .05      
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Table C21      
Mixed Analysis of Variance for Transfer Condition Effects on Number of Dwells between 
Dual-Single and Dual-Dual  Transfer Conditions from Phase 1 

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 0.705 0.410 0.031 
Context * Transfer Condition  1 1.246 0.276 0.054 
Context * Configuration-group  2 5.291 0.013 0.325 
Context * Transfer Condition  *  
Configuration-group  2 0.481 0.625 0.042 
Error(Context)  22    
Block  5.230 16.539 0.000 0.429 
Block * Transfer Condition  5.230 1.193 0.317 0.051 
Block * Configuration-group  10.461 0.756 0.676 0.064 
Block * Transfer Condition  *  
Configuration-group  10.461 0.624 0.798 0.054 
Error(Block)  115.067    
Context * Block  6.873 2.302 0.030 0.095 
Context * Block * Transfer Condition  6.873 1.619 0.135 0.069 
Context * Block * Configuration-group  13.746 1.270 0.233 0.104 
Context * Block * Transfer Condition  *  
Configuration-group  13.746 1.024 0.432 0.085 
Error(Context * Block)  151.203    

Between subjects 
Transfer Condition  1 0.001 0.975 0.000 
Configuration-group  2 1.592 0.226 0.126 
Transfer Condition * Configuration-group  2 0.319 0.730 0.028 
Error   22       
Computed using alpha = .05      
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Table C22      
Mixed Analysis of Variance for Transfer Effects on Number of Dwells between Phase 2 Single-
Single and Single-Dual Transfer Conditions 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 3.436 0.080 0.160 
Context * Transfer Condition  1 0.032 0.860 0.002 
Context * Configuration-group  2 0.516 0.605 0.054 
Context * Transfer Condition  *  
Configuration-group  2 0.443 0.649 0.047 
Error(Context)  18    
Block  14 1.799 0.039 0.091 
Block * Transfer Condition  14 0.366 0.983 0.020 
Block * Configuration-group  28 0.412 0.997 0.044 
Block * Transfer Condition  *  
Configuration-group  28 0.828 0.717 0.084 
Error(Block)  252    
Context * Block  7.810 0.480 0.865 0.026 
Context * Block * Transfer Condition  7.810 1.317 0.241 0.068 
Context * Block * Configuration-group  15.620 1.466 0.122 0.140 
Context * Block * Transfer Condition  *  
Configuration-group  15.620 0.776 0.707 0.079 
Error(Context * Block)  140.577    

Between subjects 
Transfer Condition  1 3.575 0.075 0.166 
Configuration-group  2 0.098 0.907 0.011 
Transfer Condition * Configuration-
group  2 2.576 0.104 0.223 
Error   18       
Computed using alpha = .05      
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Table C23      
Mixed Analysis of Variance for Transfer Effects on Number of Dwells between Phase 2 Dual-
Single and Single-Single Transfer Conditions 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 1.508 0.234 0.070 
Context * Transfer Condition  1 0.663 0.425 0.032 
Context * Configuration-group  2 0.366 0.698 0.035 
Context * Transfer Condition  *  
Configuration-group  2 2.032 0.157 0.169 
Error(Context)  20    
Block  14 2.369 0.004 0.106 
Block * Transfer Condition  14 1.378 0.163 0.064 
Block * Configuration-group  28 0.817 0.734 0.075 
Block * Transfer Condition  *  
Configuration-group  28 1.168 0.261 0.105 
Error(Block)  280    
Context * Block  14 0.669 0.804 0.032 
Context * Block * Transfer Condition  14 1.120 0.340 0.053 
Context * Block * Configuration-group  28 0.797 0.761 0.074 
Context * Block * Transfer Condition  *  
Configuration-group  28 1.212 0.218 0.108 
Error(Context * Block)  280    

Between subjects 
Transfer Condition  1 0.641356559 0.433 0.031 
Configuration-group  2 0.6235101 0.546 0.059 
Transfer Condition * Configuration-
group  2 1.230256618 0.313 0.110 
Error   20       
Computed using alpha = .05      
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Table C24      
Mixed Analysis of Variance on Number of Re-dwells  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 0.665 0.420 0.016 
Context * Transfer Condition  3 1.300 0.288 0.089 
Context * Configuration-group  2 0.255 0.776 0.013 
Context * Transfer Condition  *  
Configuration-group  6 1.479 0.210 0.182 
Error(Context)  40    
Block  7.027 19.733 0.000 0.330 
Block * Transfer Condition  21.081 3.931 0.000 0.228 
Block * Configuration-group  14.054 0.543 0.906 0.026 
Block * Transfer Condition  *  
Configuration-group  42.163 0.718 0.903 0.097 
Error(Block)  281.085    
Context * Block  10.131 1.309 0.222 0.032 
Context * Block * Transfer Condition  30.394 1.078 0.359 0.075 
Context * Block * Configuration-group  20.262 1.372 0.130 0.064 
Context * Block * Transfer Condition  *  
Configuration-group  60.787 1.062 0.359 0.137 
Error(Context * Block)  405.247    

Between subjects 
Transfer Condition  3 5.029 0.005 0.274 
Configuration-group  2 1.438 0.249 0.067 
Transfer Condition * Configuration-
group  6 0.705 0.647 0.096 
Error   40       
Computed using alpha = .05      
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Table C25      
Mixed Analysis of Variance for Workload Effects on Re-dwells  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 0.037 0.848 0.001 
Context * Load  1 0.333 0.567 0.007 
Context * Configuration-group  2 0.700 0.502 0.030 
Context * Load  *  Configuration-
group  2 2.133 0.130 0.085 
Error(Context)  46    
Block  4.793 14.837 0.000 0.244 
Block * Load  4.793 4.713 0.001 0.093 
Block * Configuration-group  9.587 0.573 0.829 0.024 
Block * Load  *  Configuration-group  9.587 0.632 0.779 0.027 
Error(Block)  220.494    
Context * Block  6.709 1.602 0.138 0.034 
Context * Block * Load  6.709 1.109 0.357 0.024 
Context * Block * Configuration-
group  13.418 1.754 0.048 0.071 
Context * Block * Load  *  
Configuration-group  13.418 1.415 0.148 0.058 
Error(Context * Block)  308.620    

Between subjects 
Load  1 28.991 0.000 0.387 
Configuration-group  2 1.137 0.330 0.047 
Load * Configuration-group  2 1.187 0.314 0.049 
Error   46       
Computed using alpha = .05      
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Table C26      
Mixed Analysis of Variance for Workload Effects on Number of Dwells between Phase 1 
Single-Single and Single-Dual Transfer Conditions 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 1.172 0.293 0.061 
Context * Transfer Condition  1 0.021 0.887 0.001 
Context * Configuration-group  2 3.037 0.073 0.252 
Context * Transfer Condition  *  
Configuration-group  2 1.257 0.308 0.123 
Error(Context)  18    
Block  6.066 5.208 0.000 0.224 
Block * Transfer Condition  6.066 0.412 0.872 0.022 
Block * Configuration-group  12.133 0.596 0.843 0.062 
Block * Transfer Condition  *  
Configuration-group  12.133 0.978 0.475 0.098 
Error(Block)  109.197    
Context * Block  14 0.958 0.497 0.051 
Context * Block * Transfer Condition  14 0.723 0.751 0.039 
Context * Block * Configuration-group  28 1.168 0.263 0.115 
Context * Block * Transfer Condition  *  
Configuration-group  28 0.688 0.882 0.071 
Error(Context * Block)  252    

Between subjects 
Transfer Condition  1 0.725 0.406 0.039 
Configuration-group  2 0.138 0.872 0.015 
Transfer Condition * Configuration-group  2 1.658 0.218 0.156 
Error   18       
Computed using alpha = .05      
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Table C27      
Mixed Analysis of Variance for Transfer Condition Effects on Number of Re-dwells between 
Phase 1 Dual-Single and Dual-Dual Transfer Conditions 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 0.036 0.850 0.002 
Context * Transfer Condition  1 3.221 0.086 0.128 
Context * Configuration-group  2 1.275 0.299 0.104 
Context * Transfer Condition  *  
Configuration-group  2 0.265 0.769 0.024 
Error(Context)  22    
Block  4.271 12.111 0.000 0.355 
Block * Transfer Condition  4.271 2.119 0.080 0.088 
Block * Configuration-group  8.543 0.625 0.765 0.054 
Block * Transfer Condition  *  
Configuration-group  8.543 0.611 0.777 0.053 
Error(Block)  93.969    
Context * Block  5.655 1.488 0.191 0.063 
Context * Block * Transfer Condition  5.655 1.124 0.352 0.049 
Context * Block * Configuration-group  11.310 1.746 0.069 0.137 
Context * Block * Transfer Condition  *  
Configuration-group  11.310 1.176 0.310 0.097 
Error(Context * Block)  124.407    

Between subjects 
Transfer Condition  1 0.001 0.977 0.000 
Configuration-group  2 1.377 0.273 0.111 
Transfer Condition * Configuration-group  2 0.068 0.934 0.006 
Error   22       
Computed using alpha = .05      
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Table C28      
Mixed Analysis of Variance for Transfer Effects on Number of Re-dwells between Phase 2 
Single-Single and Single-Dual Transfer Conditions 

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 8.357 0.010 0.317 
Context * Transfer Condition  1 0.986 0.334 0.052 
Context * Configuration-group  2 1.117 0.349 0.110 
Context * Transfer Condition  *  
Configuration-group  2 1.903 0.178 0.175 
Error(Context)  18    
Block  5.187 1.086 0.374 0.057 
Block * Transfer Condition  5.187 0.687 0.640 0.037 
Block * Configuration-group  10.374 0.746 0.684 0.077 
Block * Transfer Condition  *  
Configuration-group  10.374 0.821 0.613 0.084 
Error(Block)  93.366    
Context * Block  5.211 1.005 0.421 0.053 
Context * Block * Transfer Condition  5.211 1.267 0.284 0.066 
Context * Block * Configuration-group  10.422 0.805 0.629 0.082 
Context * Block * Transfer Condition  *  
Configuration-group  10.422 0.877 0.561 0.089 
Error(Context * Block)  93.801    

Between subjects 
Transfer Condition  1 7.352 0.014 0.290 
Configuration-group  2 0.741 0.491 0.076 
Transfer Condition * Configuration-
group  2 3.574 0.049 0.284 
Error   18       
Computed using alpha = .05      
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Table C29      
Mixed Analysis of Variance for Transfer Effects on Number of Re-dwells between Phase 2 
Dual-Single and Single-Single Transfer Conditions 

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 3.103 0.093 0.134 
Context * Transfer Condition  1 0.621 0.440 0.030 
Context * Configuration-group  2 1.911 0.174 0.160 
Context * Transfer Condition  *  
Configuration-group  2 1.734 0.202 0.148 
Error(Context)  20    
Block  5.703 1.392 0.226 0.065 
Block * Transfer Condition  5.703 1.264 0.281 0.059 
Block * Configuration-group  11.406 1.117 0.354 0.101 
Block * Transfer Condition  *  
Configuration-group  11.406 1.063 0.397 0.096 
Error(Block)  114.059    
Context * Block  5.061 0.474 0.797 0.023 
Context * Block * Transfer Condition  5.061 1.227 0.302 0.058 
Context * Block * Configuration-group  10.122 0.686 0.737 0.064 
Context * Block * Transfer Condition  *  
Configuration-group  10.122 0.555 0.849 0.053 
Error(Context * Block)  101.223    

Between subjects 
Transfer Condition  1 0.467 0.502 0.023 
Configuration-group  2 0.417 0.665 0.040 
Transfer Condition * Configuration-group  2 1.391 0.272 0.122 
Error   20       
Computed using alpha = .05      
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Table C30      
Mixed Analysis of Variance on Trial Response Time  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 266.652 0.000 0.870 
Context * Transfer Condition  3 1.526 0.222 0.103 
Context * Configuration-group  2 1.708 0.194 0.079 
Context * Transfer Condition  *  
Configuration-group  6 0.701 0.650 0.095 
Error(Context)  40    
Epoch  3.467 48.219 0.000 0.547 
Epoch * Transfer Condition  10.402 1.608 0.107 0.108 
Epoch * Configuration-group  6.935 1.103 0.365 0.052 
Epoch * Transfer Condition  *  
Configuration-group  20.804 1.064 0.393 0.138 
Error(Epoch)  138.694    
Context * Epoch  5 7.780 0.000 0.163 
Context * Epoch * Transfer Condition  15 0.865 0.604 0.061 
Context * Epoch * Configuration-group  10 0.661 0.759 0.032 
Context * Epoch * Transfer Condition  *  
Configuration-group  30 1.141 0.291 0.146 
Error(Context * Epoch)  200    

Between subjects 
Transfer Condition  3 4.561 0.008 0.255 
Configuration-group  2 1.208 0.309 0.057 
Transfer Condition * Configuration-group  6 0.259 0.953 0.037 
Error   40       
Computed using alpha = .05      
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Table C31      
Mixed Analysis of Variance for Workload Effects on Dwell Durations  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 316.323 0.000 0.873 
Context * Load  1 1.715 0.197 0.036 
Context * Configuration-group  2 2.034 0.142 0.081 
Context * Load  *  Configuration-
group  2 0.117 0.890 0.005 
Error(Context)  46    
Epoch  1.730 48.215 0.000 0.512 
Epoch * Load  1.730 0.803 0.436 0.017 
Epoch * Configuration-group  3.460 0.699 0.575 0.029 
Epoch * Load  *  Configuration-
group  3.460 1.673 0.172 0.068 
Error(Epoch)  79.583    
Context * Epoch  2 18.983 0.000 0.292 
Context * Epoch * Load  2 0.581 0.561 0.012 
Context * Epoch * Configuration-
group  4 1.076 0.373 0.045 
Context * Epoch * Load  *  
Configuration-group  4 2.642 0.039 0.103 
Error(Context * Epoch)  92    

Between subjects 
Load  1 19.157 0.000 0.294 
Configuration-group  2 1.126 0.333 0.047 
Load * Configuration-group  2 0.303 0.740 0.013 
Error   46       
Computed using alpha = .05      
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Table C32      
Mixed Analysis of Variance for Workload Effects on Dwell Durations between Phase 1 Single-
Single and Single-Dual Transfer Conditions 

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 122.583 0.000 0.872 
Context * Transfer Condition  1 1.057 0.318 0.055 
Context * Configuration-group  2 0.624 0.547 0.065 
Context * Transfer Condition  *  
Configuration-group  2 1.887 0.180 0.173 
Error(Context)  18    
Epoch  2 23.164 0.000 0.563 
Epoch * Transfer Condition  2 1.985 0.152 0.099 
Epoch * Configuration-group  4 0.333 0.854 0.036 
Epoch * Transfer Condition  *  
Configuration-group  4 0.256 0.904 0.028 
Error(Epoch)  36    
Context * Epoch  2 10.145 0.000 0.360 
Context * Epoch * Transfer Condition  2 2.312 0.114 0.114 
Context * Epoch * Configuration-group  4 1.817 0.147 0.168 
Context * Epoch * Transfer Condition  *  
Configuration-group  4 0.633 0.642 0.066 
Error(Context * Epoch)  36    

Between subjects 
Transfer Condition  1 0.470 0.502 0.025 
Configuration-group  2 0.073 0.930 0.008 
Transfer Condition * Configuration-group  2 0.144 0.867 0.016 
Error   18       
Computed using alpha = .05      
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Table C33      
Mixed Analysis of Variance for Workload Effects on Dwell Durations between Phase 1 Dual-
Single and Dual-Dual Transfer Conditions 

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 206.066 0.000 0.904 
Context * Transfer Condition  1 0.632 0.435 0.028 
Context * Configuration-group  2 1.278 0.299 0.104 
Context * Transfer Condition  *  
Configuration-group  2 0.419 0.663 0.037 
Error(Context)  22    
Epoch  1.731 21.546 0.000 0.495 
Epoch * Transfer Condition  1.731 0.617 0.523 0.027 
Epoch * Configuration-group  3.462 2.014 0.120 0.155 
Epoch * Transfer Condition  *  
Configuration-group  3.462 0.247 0.887 0.022 
Error(Epoch)  38.083    
Context * Epoch  2 7.917 0.001 0.265 
Context * Epoch * Transfer Condition  2 0.184 0.833 0.008 
Context * Epoch * Configuration-group  4 1.418 0.244 0.114 
Context * Epoch * Transfer Condition  *  
Configuration-group  4 1.195 0.326 0.098 
Error(Context * Epoch)  44    

Between subjects 
Transfer Condition  1 0.644 0.431 0.028 
Configuration-group  2 1.548 0.235 0.123 
Transfer Condition * Configuration-
group  2 0.025 0.975 0.002 
Error   22       
Computed using alpha = .05      
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Table C34      
Mixed Analysis of Variance for Transfer Effects on NSIs between Phase 2 Single-Single and 
Single-Dual Transfer Conditions 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 76.558 0.000 0.810 
Context * Transfer Condition  1 1.075 0.314 0.056 
Context * Configuration-group  2 0.893 0.427 0.090 
Context * Transfer Condition  *  
Configuration-group  2 0.528 0.599 0.055 
Error(Context)  18    
Epoch  1.253 2.804 0.101 0.135 
Epoch * Transfer Condition  1.253 0.380 0.591 0.021 
Epoch * Configuration-group  2.506 0.487 0.662 0.051 
Epoch * Transfer Condition  *  
Configuration-group  2.506 1.356 0.281 0.131 
Error(Epoch)  22.555    
Context * Epoch  2 1.336 0.276 0.069 
Context * Epoch * Transfer Condition  2 0.148 0.863 0.008 
Context * Epoch * Configuration-group  4 0.297 0.878 0.032 
Context * Epoch * Transfer Condition  *  
Configuration-group  4 1.691 0.173 0.158 
Error(Context * Epoch)  36    

Between subjects 
Transfer Condition  1 3.221 0.090 0.152 
Configuration-group  2 0.831 0.452 0.085 
Transfer Condition * Configuration-group  2 0.677 0.520 0.070 
Error   18       
Computed using alpha = .05      
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Table C35      
Mixed Analysis of Variance for Transfer Effects on Number of Re-dwells between Phase 2 
Dual-Single and Single-Single  Transfer Conditions 
      

Source   df F Sig. ŋ 
Within subjects 

Context  1 70.836 0.000 0.780 
Context * Transfer Condition  1 3.293 0.085 0.141 
Context * Configuration-group  2 1.676 0.212 0.144 
Context * Transfer Condition  *  
Configuration-group  2 0.265 0.770 0.026 
Error(Context)  20    
Epoch  2 1.171 0.320 0.055 
Epoch * Transfer Condition  2 1.799 0.179 0.083 
Epoch * Configuration-group  4 2.210 0.085 0.181 
Epoch * Transfer Condition  *  
Configuration-group  4 0.708 0.591 0.066 
Error(Epoch)  40    
Context * Epoch  2 2.685 0.081 0.118 
Context * Epoch * Transfer Condition  2 0.347 0.709 0.017 
Context * Epoch * Configuration-group  4 0.748 0.565 0.070 
Context * Epoch * Transfer Condition  *  
Configuration-group  4 0.530 0.715 0.050 
Error(Context * Epoch)  40    

Between subjects 
Transfer Condition  1 8.491 0.009 0.298 
Configuration-group  2 1.133 0.342 0.102 
Transfer Condition * Configuration-group  2 0.334 0.720 0.032 
Error   20       
Computed using alpha = .05      
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Table C36      
Mixed Analysis of Variance on Dwell Durations from Experiment 3  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 9.856 0.003 0.198 
Context * Transfer Condition  3 1.559 0.214 0.105 
Context * Configuration-group  2 0.635 0.535 0.031 
Context * Transfer Condition  *  
Configuration-group  6 0.279 0.944 0.040 
Error(Context)  40    
Block  7.079 0.963 0.459 0.024 
Block * Transfer Condition  21.236 5.839 0.000 0.305 
Block * Configuration-group  14.157 0.742 0.732 0.036 
Block * Transfer Condition  *  
Configuration-group  42.472 0.967 0.535 0.127 
Error(Block)  283.149    
Context * Block  13.527 0.705 0.765 0.017 
Context * Block * Transfer 
Condition  40.581 1.125 0.279 0.078 
Context * Block * Configuration-
group  27.054 1.095 0.339 0.052 
Context * Block * Transfer Condition  *  
Configuration-group 81.162 0.857 0.804 0.114 
Error(Context * Block)  541.082    

Between subjects 
Transfer Condition  3 4.097 0.013 0.235 
Configuration-group  2 1.412 0.256 0.066 
Transfer Condition * Configuration-
group  6 1.131 0.362 0.145 
Error   40       
Computed using alpha = .05      
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Table C37      
Mixed Analysis of Variance for Workload Effects on Dwell Durations  

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 3.952 0.053 0.079 
Context * Load  1 0.029 0.865 0.001 
Context * Configuration-group  2 0.339 0.714 0.015 
Context * Load  *  Configuration-
group  2 1.222 0.304 0.050 
Error(Context)  46    
Block  5.403 1.753 0.117 0.037 
Block * Load  5.403 2.842 0.014 0.058 
Block * Configuration-group  10.806 0.600 0.825 0.025 
Block * Load  *  Configuration-
group  10.806 0.930 0.511 0.039 
Error(Block)  248.547    
Context * Block  8.477 0.853 0.562 0.018 
Context * Block * Load  8.477 1.336 0.220 0.028 
Context * Block * Configuration-
group  16.954 1.190 0.269 0.049 
Context * Block * Load  *  
Configuration-group  16.954 0.923 0.547 0.039 
Error(Context * Block)  389.944    

Between subjects 
Load  1 20.657 0.000 0.310 
Configuration-group  2 2.234 0.119 0.089 
Load * Configuration-group  2 1.147 0.326 0.048 
Error   46       
Computed using alpha = .05      
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Table C38      
Mixed Analysis of Variance for Workload Effects on Dwell Durations between Phase 1 Single-
Single and Single-Dual Transfer Conditions 

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 1.242 0.280 0.065 
Context * Transfer Condition  1 0.500 0.489 0.027 
Context * Configuration-group  2 0.355 0.706 0.038 
Context * Transfer Condition  *  
Configuration-group  2 0.031 0.970 0.003 
Error(Context)  18    
Block  5.679 2.137 0.059 0.106 
Block * Transfer Condition  5.679 0.736 0.614 0.039 
Block * Configuration-group  11.358 0.974 0.476 0.098 
Block * Transfer Condition  *  
Configuration-group  11.358 0.731 0.711 0.075 
Error(Block)  102.220    
Context * Block  14 1.701 0.056 0.086 
Context * Block * Transfer Condition  14 0.775 0.696 0.041 
Context * Block * Configuration-group  28 1.356 0.116 0.131 
Context * Block * Transfer Condition  *  
Configuration-group  28 1.334 0.128 0.129 
Error(Context * Block)  252    

Between subjects 
Transfer Condition  1 0.700 0.414 0.037 
Configuration-group  2 0.258 0.776 0.028 
Transfer Condition * Configuration-group  2 0.188 0.830 0.020 
Error   18       
Computed using alpha = .05      

 



 

 170 

 

Table C39      
Mixed Analysis of Variance for WorkTransfer Condition Effects on Dwell Durations between 
Phase 1 Dual-Single and Dual-Dual  Transfer Conditions 

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 2.299 0.144 0.095 
Context * Transfer Condition  1 0.085 0.773 0.004 
Context * Configuration-group  2 1.026 0.375 0.085 
Context * Transfer Condition  *  
Configuration-group  2 0.032 0.969 0.003 
Error(Context)  22    
Block  4.849 2.385 0.045 0.098 
Block * Transfer Condition  4.849 0.485 0.781 0.022 
Block * Configuration-group  9.699 0.732 0.688 0.062 
Block * Transfer Condition  *  
Configuration-group  9.699 1.138 0.342 0.094 
Error(Block)  106.688    
Context * Block  6.828 1.053 0.397 0.046 
Context * Block * Transfer Condition  6.828 1.299 0.255 0.056 
Context * Block * Configuration-group  13.656 0.969 0.486 0.081 
Context * Block * Transfer Condition  *  
Configuration-group  13.656 0.701 0.767 0.060 
Error(Context * Block)  150.218    

Between subjects 
Transfer Condition  1 0.002 0.967 0.000 
Configuration-group  2 2.105 0.146 0.161 
Transfer Condition * Configuration-group  2 1.771 0.194 0.139 
Error   22       
Computed using alpha = .05      
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Table C40      
Mixed Analysis of Variance for Transfer Effects on Dwell Durations between Phase 2 Single-
Single and Single-Dual Transfer Conditions 

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 9.982 0.005 0.357 
Context * Transfer Condition  1 1.689 0.210 0.086 
Context * Configuration-group  2 0.722 0.499 0.074 
Context * Transfer Condition  *  
Configuration-group  2 0.370 0.696 0.039 
Error(Context)  18    
Block  4.072 1.041 0.393 0.055 
Block * Transfer Condition  4.072 1.226 0.307 0.064 
Block * Configuration-group  8.143 1.191 0.316 0.117 
Block * Transfer Condition  *  
Configuration-group  8.143 0.911 0.514 0.092 
Error(Block)  73.289    
Context * Block  6.013 0.881 0.512 0.047 
Context * Block * Transfer Condition  6.013 0.688 0.660 0.037 
Context * Block * Configuration-group  12.025 1.366 0.193 0.132 
Context * Block * Transfer Condition  *  
Configuration-group  12.025 1.101 0.367 0.109 
Error(Context * Block)  108.226    

Between subjects 
Transfer Condition  1 16.965 0.001 0.485 
Configuration-group  2 0.189 0.829 0.021 
Transfer Condition * Configuration-group  2 0.972 0.397 0.097 
Error   18       
Computed using alpha = .05      
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Table C41      
Mixed Analysis of Variance for Transfer Effects on Number of Re-dwells between Phase 2 
Dual-Single and Single-Single Transfer Conditions 

      
Source   df F Sig. ŋ 

Within subjects 
Context  1 4.654 0.043 0.189 
Context * Transfer Condition  1 5.615 0.028 0.219 
Context * Configuration-group  2 0.909 0.419 0.083 
Context * Transfer Condition  *  
Configuration-group  2 0.556 0.582 0.053 
Error(Context)  20    
Block  4.931 0.912 0.475 0.044 
Block * Transfer Condition  4.931 0.364 0.870 0.018 
Block * Configuration-group  9.862 1.343 0.219 0.118 
Block * Transfer Condition  *  
Configuration-group  9.862 1.400 0.192 0.123 
Error(Block)  98.624    
Context * Block  14 1.192 0.281 0.056 
Context * Block * Transfer Condition  14 1.531 0.099 0.071 
Context * Block * Configuration-group  28 0.862 0.670 0.079 
Context * Block * Transfer Condition  *  
Configuration-group  28 1.177 0.251 0.105 
Error(Context * Block)  280    

Between subjects 
Transfer Condition  1 0.436 0.516 0.021 
Configuration-group  2 0.874 0.433 0.080 
Transfer Condition * Configuration-group  2 0.164 0.850 0.016 
Error   20       
Computed using alpha = .05      
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8. Appendix D: Experiment Software 

The experiment software is located at http://www.cogsci.rpi.edu/cogworks and is 

maintained by the CogWorks Laboratory. 
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9. Appendix E: Experiment Materials 

All participant materials (e.g., instructions, blank informed consent forms, and 

debriefing statements) for each experiment can be found at 

http://www.cogsci.rpi.edu/cogworks and is maintained by the CogWorks Laboratory. 


