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ABSTRACT

This study analyzes the efficacy of using unbiased tournament selection in Genetic

Algorithms compared to the performance of well-tuned random tournament selec-

tion with respect to the Travelling Salesman Problem. By stopping diversity loss by

non-selection, unbiased tournament selection has been shown to perform better than

other forms of selection when neither algorithm has been tuned for optimum per-

formance. However, with parameter tuning and standard optimizations it is shown

that the gains made by unbiased selection may be overcome in many cases. Both

overall fitness and time to converge (speed) are examined against a series of city

tours, populations, crossover pressures, and mutation rates.
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1. INTRODUCTION

Genetic Algorithms (GA) are modelled after biological processes to quickly solve or

approximate answers to difficult problems not easily answered with raw computing

power. For example, NP-hard or NP-complete problems, such as the Knapsack

problem, Travelling Salesman problem, or the Hamiltonian Path problem are are

often tackled by GAs

Since there are so many different variables in genetic programs, much work

has been done to parameterize and create benchmark tests for various aspects of a

genetic algorithm. This includes things such as population size, crossover probabil-

ity, mutation probability, crossover type, population replacement models, elitism,

and even the pseudo-random number generators used [1, 2]. In addtion, one area

in which there is much research is in comparing the efficiencies of various selection

methods, the process by which parents are chosen to propegate their digital DNA

to the next generation.

It has long been known that an important aspect of a genetic algorithm is how

well it manages loss of diversity between generations. As the various operators are

performed upon a generation, if there is too much diversity between members of a

population then the algorithm will converge slowly, or perhaps not at all. If there

is too little diversity, the population may become sterile and quickly converge upon

a sub-optimal solution.

Although there are many different types of selection methods, tournament

selection is one of the most well known and commonly used methods in many various

genetic algorithms. It allows a finer control of selection pressure, and by extension,

optimization, than other methods [3, 4]. By itself, tournament selection is known to

have loss of diversity due to a statistical bias from non-sampling and non-selection.

Work has been done to remove this bias and increase diversity with the development

of an unbiased tournament selection method [5].

While unbiased tournament selection has been shown to perform better in some

cases, the studies have focused on simplified algorithm comparisons by minimizing
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or removing effects from other parameters, such as mutation. However, most genetic

algorithms would likely not leave out these in practice and would instead be tuned

or optimized.

This paper investigates whether random tournament selection can perform as

good as or better than the unbiased selection methodology when optimization and

tuning techniques have been applied. Testing will be performed using one of the

best known problems, the Travelling Salesman problem (TSP).

Much work has been done in trying to determine optimal parameters and

methodologies to use in genetic programs. This research will help to extend work

in evaluating the overall effects of diversity loss that can occur during the selection

stages of the genetic algorithm. While it has been demonstrated that an unbiased-

tournament selection method can create a more effective GA under specific cir-

cumstances, other questions must still be asked. Does unbiased selection always

perform better than random selection? As we optimize and tune each GA around

the selection methods, does the difference in performance increase or decrease? Can

mutation or crossover techniques render the diversity loss to be insignificant?

The answers to these questions can help to direct the choices of designers of fu-

ture programs that implement GA. Knowing for sure that unbiased methods always

perform better would be very useful in determining the proper selection method.

Conversely, if we find that the loss of diversity does not make a significant impact

after tuning, a designer might make the choice to spend time tuning parameters for

a well known random tournament selection instead of implementing a more complex

or less efficient selection scheme.

Additionally, one growing area in genetic programming is in the field of dy-

namic or self optimized genetic algorithms. In these cases, deeper knowledge of

selection methods, their potential performance, and the effects of tuning will assist

in the design of such algorithms. Knowing that diversity loss can or cannot be

compensated for by standard operators will allow for informed decisions.



2. HISTORICAL REVIEW

The basic Genetic Algorithm or Genetic Program takes both its terminology and

its inspiration from its biological analogue. Populations of chromosomes are evalu-

ated on the most fit members, which then mix their DNA to create children with

properties of each parent.

The best candidates for GA are difficult problems, like the NP-Hard problems

mentioned above, or other types of complex combinatorial problems. GA have been

even used to help designers optimize complex circuit design and other electronics

issues [6].

After initially generating random solutions to the problem at hand, the stochas-

tic process uses genetic recombination techniques to form another population of

possible solutions based upon the best qualitfied members of the previous group.

Each potential solution of is represented by a chromosome which is simply the data

points that make up the solution. The data in each chromosome is encoded in such

a manner as to allow it to be acted upon by the various operators for selection,

crossover, and mutation.

The most commonly used problem encodings seen in much of the research in-

clude binary encoding, which is literally a string of bits, often used for mathematical

problems. Sections of the binary string are taken from the parents, and a bit can

be simply flipped during mutation. Tree encoding is often used in genetic program-

ming to create expression trees [7], such as when each leaf of the tree is a literal

and internal nodes are mathematical operators. Entire sub trees can be swapped

and recombined for both crossover and mutation operations. An alternative to tree

encoding is graph encoding, which is similar but allows nodes to be connected in

cycles. A benefit here is that graphs can often be more efficienct as they often can

avoid the recursion used in regular trees [7]. To encode data solutions for problems

where the order of members is important, like the Travelling Salesman, permuta-

tional encoding is used. In this, a simple list of the members is used indicating the

sequence they should be in.
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Taking the biological terminology further, each individual data point is referred

to as an allele, the most basic component of the solution. In a Travelling Salesman

Problem therefore, an allele would be a single city, the encoding of all cities into

a single tour would be the chromosome, and the collection of chromosomes from

which the parents are drawn is then the population.

Many researchers have studied in depth the wide assortment of functions and

parameters that are common in GAs in order to improve the performance and useful-

ness on various problem sets. A major concern in designing a GA is loss of diversity,

especially with respect to the chosen selection scheme. In a typical tournament-type

selection, a set of members is chosen at random and all are compared based on the

fitness function for the problem. Since it is entirely possible for the best members

in the population to be overlooked thanks to the random selections, there is the

potential for loss [8].

[9] proposes new types of selection - Correlative Tournament Selection and

Correlative Family-based Selection - to help address diversity loss by more closely

managing what individuals are chosen as parents or survive to the next generation.

In a similar attempt, [5] offer what they call an Unbiased Tournament Selection

which guarantees the most fit individual will be chosen as a parent [5].

Another angle of attack to battle diversity loss is through mutation. The

mutation operator’s main purpose is to inject diversity back into a population and

avoid premature stagnation. Care should be taken, however, since too high a rate of

mutation can act as plain noise in the system without bringing any benefit of pro-

gressing towards a solution. [10] suggests mutation does not show a linear response

with performance at high mutation rates. Mutation operators may take on different

forms depending on the chromosome encoding type. Bit-encoded chromosomes gen-

erally flip a random bit in string. For permutation encodings, such as in the TSP,

common operators include “swap” and “insert” [11]. In the former, two randomly

chosen elements within the chromosome are swapped. In the latter, one element is

chosen and then inserted at random between two other elements.

The well known Travelling Salesman Problem (TSP) is an attempt to find

the shortest Hamiltonian circuit on a weighted graph [12]. Or plainly put, it seeks
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to get the salesman to every city on his route exactly 1 time, and then return

home, by travelling the shortest distance possible. As TSP is known to be NP-Hard

[12], genetic algorithms have often been the tool of choice for those attempting to

approximate or find the best solution.

Figure 2.1: TSP: Initial and Final Tours [13]

The problem generally discussed is the symmetric TSP. This is simply the

problem as expressed on an underlying symmetric graph where an edge’s weight

is the same regardless of the direction in which it is traversed. Not only is this a

good approximation in most cases, it also significantly reduces the complexity of the

problem and halves the number of possible solutions as compared to the asymmetric

TSP.

Some research has been done in the field to investigate alternative approaches

that can handle 2-D Euclidean graphs without reducing them to a linear represen-

tation [14]. This approach attempts to avoid the unavoidable data loss that occurs

when mapping multiple dimensions to a single dimension. This is accomplished by

randomly partitioning the graph with a series of cuts and reassigning edges that

were destroyed by the partitioning process.



3. METHOD

3.1 Hypothesis

The null hypothesis to be confirmed or rejected by this study can be stated as

follows:

After standard optimization of a Genetic Algorithm’s parameters for

solving the Travelling Salesman Problem, there is no overall performance

gain achieved by implementing unbiased tournament selection compared

to a random tournament selection.

3.2 Measures

The primary indicator of whether diversity loss is overcome is a measure of

the optimum fitness achieved by each selection type. The “fitness” is the solution

that has been found by the GA - that is, the shortest path that has been found.

The maximum fitness, or minimal solution, discovered at the time of convergence

will be the major factor in determining the relative performance of the two selection

methods.

In addition, the speed of the algorithm can be simply defined as the number of

generations that have been completed before convergence upon a solution is realized.

While this not the primary concern here, speed is a valuable metric to have in the

case that there is no significant difference in fitness.

3.3 Selection Methods

3.3.1 Random Tournament Selection

For clarity, we will refer to the commonly known “tournament selection” op-

erator instead as “random tournament selection [5]”. This is appropriate in that

the players in the tournament are chosen at random, unlike the tournament player

matchups in the unbiased tournaments.

6
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In a random tournament of size s, s players are chosen at random from the

overall population. Then, the player with the best fitness is chosen as the winner and

will be used as a parent for the next population [5]. Both conceptually simple and

easy to implement, random selection is also easy to parallelize since all tournaments

are completely independent of each other.

Intuitively, as the tournament size get larger it is more probable that the most

fit individual (and indeed all individuals) will participate in more tournaments. This

most fit member therefore is likely to be selected more often, thus decreasing overall

diversity. Indeed, it has been shown that larger tournament sizes increase the loss of

diversity [15], and [3] shows that in fact almost half the chromosomes in a population

are not selected with a tournament size of only 5.

For these reasons, only binary tournaments for tests on the random selection

method were used in this GA. This is additionally appropriate as the unbiased

selection method only requires a tournament of size 2, as explained later.

3.3.2 Unbiased Tournament Selection

This selection scheme was developed by [5] as a way to eliminating diversity

loss caused by individuals not being sampled to participate in the tournament. The

basic concept is to line up two permutations of the entire population, taking care

that no individual is matched with itself. Then, each pair is evaluated as a single

binary tournament [5].

Since each individual must participate in the selection tournament exactly two

times, it is no longer possible to lose the most fit individual due to simple gapping

of the random selection function. Further, the most fit individual must be selected

exactly twice while the least fit member is not selected at all. Thus, there is still a

strong pressure towards convergence to the solution.

One drawback of the unbiased tournament selection described is that it is not

able to be parallelized since there are now constraints set on the tournaments. A

parallel unbiased tournament selection method has also been devised to help address

this, although it is not as complete [5]. We will not examine it here.
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3.4 Optimization Parameters

A large number of tests were run on each selection method, stepping through

small changes in each of a number of parameters. As stated earlier, tournament size

was fixed at 2. All tests were performed on the Travelling Salesman Problem which

lends itself to be permutationally encoded.

3.4.1 Uniform Order Based Crossover

The crossover rate controls how two parents of a population swap their alleles

in creation of the child.

Crossover rates also have an impact upon the diversity of the populations

as too little crossover may cause the GA to converge upon a local minima. Tests

used Uniform Order Based Crossover (UOBX) for the permutation problems as it

has been demonstrated to offer better performance than other common crossover

techniques [11].

As explained by [11], in UBOX each allele in the first parent is transferred to

the same position in the child with the probability of p. Then, each of the open

positions in the child is filled from the second parent, taking care that the alleles

remain in the same order as they were in the parent [11]. See Figure 3.1 for an

example.

P1 = (6 5 2 8 4 1 3 7 )

P2 = (3 8 1 2 5 6 7 4 )

XO = (X X . X X X . . )

C1 = (6 5 3 8 4 1 2 7 )

C2 = (6 5 1 2 8 3 7 4 )

Figure 3.1: UBOX Example

Crossover probability was varied p from 0.5 to 0.7 in increments of 0.1

In addition, many GAs assign an overall probability for crossover which con-

trols whether crossover even occurs. This activity will depress the overall diversity

of the GA, so it was not used in this study.
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3.4.2 Mutation

Mutation will artificially will create diversity of sorts in the population. Zero or

very low mutation rates decrease the chance of pulling away from a local maximum.

Too high of a mutation rate will cause undue noise and slow convergence. Very high

mutation will begin to seriously degrade performance.

Since the TSP is permutationally encoded, a mutation event consists of swap-

ping two positions in the individual.

We varied the mutation rate from 0 through 0.03 in increments of 0.005. Some

suggest the mutation rate should be within 0.5%-1% [1], so this should ensure we

did not stop collecting data before the optimum is reached.

3.4.3 Population Size

The population is the collection of potential solutions to the problem. It is

from this population that the tournaments will select their players and determine the

winners. There is no consensus on an optimal population size for general problems

for genetic algorithms. However, it would be remiss to ignore the impact of the

size of a population while evaluating effects of that population’s diversity. We used

population sizes of 30, 100, and 200.

3.4.4 Elitism

Elitism ensures that the most fit member of the population is included in the

next generation. This practice is often used because it ensures each generation will

be at least as good as its predecessor and in many cases will decrease the time

needed to converge upon a solution. However, that is not always beneficial as it can

increase the chance of convergence upon a local minimum or maximum. Regardless,

this manipulation certainly decreases diversity so, since we are examining the ability

to achieve the opposite, we will not use elitism.

3.5 Test Procedure

As noted, we uses the Travelling Salesman Problem as our benchmark test

for evaluating the tournament selection schemes. There are several well known test
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problems which have been published along with their shortest known tour lengths.

We will examine the 52-city, 76-city and 105-city problems [16] as seen in Table 3.1.

Table 3.1: Problem Sets and Known Solutions

Problem Name Num. Cities Shortest Known Path
berlin52 52 7542

eli76 76 538
lin105 105 14379

Each of the tour problems was run against a battery of parameters detailed

in the section on Parameters and summarized in Table 3.2. For each combination

of the parameters, for each tournament selection type, and for each tour, a batch of

200 individual runs through the GA was performed.

Table 3.2: Algorithm Parameters

Parameter Values
Tournament Type Random, Unbiased
Tournament Size 2 (Binary Tournament)
Crossover Rate 0.50, 0.60, 0.70
Mutation Rate 0.000, 0.005, 0.010, 0.015, 0.020, 0.025, 0.030
Population Size 30, 100, 200

In addition to the crossover operator, some GA algorithms have an additional

parameter that governs the rate at which parents combine to generate the child that

is, there is an additional probability of whether crossover will even be performed.

As crossover is the driving force behind changes to the population at large, and

therefore a major cause of population diversity, the algorithm was constructed to

always crossover.

Convergence is detected by the program via a weighted mean average. When

the WMA comes within 0.01% of the best detected solution, the algorithm ends.

While this is not the most complex method of determining convergence, it is rela-

tively simple to implement. Configured with a look-behind of 100 generations, the

technique may slightly inflate the generation count. However, it is equitable and
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will not affect the overall performance comparisons between random and unbiased

selection schemes.



4. RESULTS

Altogether, 63 batches were run against each city tour for each tournament selection

scheme for a total of 378 batches. For each run of the batch, the best solution and

the number of generations at convergence was recorded.

The mean number of generations for the batch at convergence and the mean

solution for each batch was collected for initial analysis to determine which set of

optimizations garnered the best results for each tour and each selection scheme, as

seen in Table 4.1 and Table 4.2 .

Table 4.1: Best Fitness Means

Cities Tournament Mean Fit. Mean Gens Crossover Mutation Pop. Size
52 Random 8734 618 0.6 2.5 200
52 Unbiased 8751 656 0.5 3.0 200
76 Random 615 794 0.5 2.0 200
76 Unbiased 621 780 0.5 3.0 200
105 Random 18821 1005 0.5 1.5 200
105 Unbiased 19014 1031 0.5 3.0 200

Table 4.2: Best Speed Means

Cities Tournament Mean Fit. Mean Gens Crossover Mutation Pop. Size
52 Random 9078 577 0.7 0.0 200
52 Unbiased 103217 518 0.7 0.0 200
76 Random 647 702 0.7 0.0 200
76 Unbiased 756 651 0.7 0.0 200
105 Random 20683 915 0.7 0.0 200
105 Unbiased 26015 818 0.7 0.0 200

Note that the mean speed was actually significantly faster, that is, fewer gen-

erations before convergence, for the tests with a chromosome population of only

30. However, for analysis purposes, all tests performed with this population can be

12
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ignored because performance was completely inadequate in terms of fitness. Figure

4.1 shows the average solutions for each test done with random selection, aligned

by population.

Figure 4.1: Mean Solutions By Population Size

Since the purpose is to determine if optimizations in general can overshadow

the choice of selection scheme, the analysis between the two selection schemes should

be performed between the best-optimized algorithm runs. Note that it is therefore

both acceptable, and indeed necessary, to compare the data between the top per-

forming random selection GA and the top performing unbiased selection GA, even

though the optimization parameters are in fact different.

Based on the data from Tables 4.1 and Table 4.2, the data was analysed with

the two-sample t-test for unequal variances. So for each tour length, the fastest

dataset for random tournament selection was compared against the fastest dataset

from for unbiased tournament selection. Likewise, the most fit data was matched

between selection mechanisms.

In Table 4.3, the analysis results for fitness optimization is shown. Where p

>0.05, the mean data was left out of the table as there is no statistical significance
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and is therefore irrelevant.

Table 4.3: Fitness Optimization Analysis (R/U Random / Unbiased)

Cities p - Fitness p - Speed Mean Fitness - R / U Mean Speed - R / U
52 0.649 0.00098 618 / 656
76 0.0101 0.116 615 / 621
105 0.195 0.0248 1005 / 1031

Table 4.4: Significance: Speed Optimization

Cities p - Fitness p - Speed Mean Fitness - R / U Mean Speed - R / U
52 1.68E-34 4.16E-34 9078 / 10327 577 / 519
76 6.47E-28 2.24E-24 64 / 756 702 / 651
105 7.41E-29 3.81E-45 20683 / 26015 915 / 818



5. DISCUSSION

The chomosome population size had a much more pronounced effect on the outcome

of the tests than anticipated. As mentioned earlier, the graph in 4.1 shows distinct

banding based on population size. Although only one graph is shown, this banding

occurs on all tour sizes and with both selection schemes and is a strong indicator of

the relative importance of the population size parameter.

Statistical analysis of the optimized configurations for fitness yielded interest-

ing, albeit mixed, results. For the 52 and 105 city problems, analysis revealed p

>0.05, thus agreeing with the hypothesis that there is no gain by using unbiased

tournament to reduce diversity. However since there is no significant difference in

the fitness, the speed of each method at this configuration must be compared. In

doing so, it is found that p <= 0.05. In fact it is the random selection method that

is significantly faster than unbiased method in both cases.

For the 76 city problem, the opposite holds true - there is a significant dif-

ference in the fitness level, and again it is the random selection method that is

out-performing the other.

Another picture is formed while looking at the speed-optimized result set in

Table 4.4. Here, there is a significant improvement in speed made by the unbiased

tournament selection method on all three city tours. This clearly refutes the hy-

pothesis that no gain would be seen. While it is true that random selection has

better fitness for each city, this is irrelevant certainly speed is what one cares about

if that is the optimization that has been chosen.

Although the hypothesis has been refuted by the speed optimization trials, it

would be better to consider each aspect separately when making a decision about

which selection method to use. Certainly if speed is the only concern, then unbiased

tournament selection would be a good choice. However, more analysis would need

to be done to quantify the accuracy of this result and ensure it is acceptable.

A glance at Table 4.2 shows that the crossover-rate was fixed at 0.7, and there

was no mutation whatsoever, for each of the fastest trials. A crossover rate other

15
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than 0.5 will favour a one of the parents and cause, on average, more alleles to come

from that favored parent. This, combined with a 0% mutation rate, should cause

these test configurations to have less divertisy. Combined with the data results, this

seems to indicate that there is indeed a higher chance of getting “stuck” on a local

minima due to lower population diversity.



6. CONCLUSION AND FUTURE WORK

Typical random tournament selection methods have a known deficiency wherein a

population’s diversity may be diminished because it may not sample fit individuals.

Unbiased tournament selection aims to mitigate this issue by ensuring all members of

a population can compete in the tournament. However, performance increases from

unbiased tournament selection can be overshadowed by standard GA optimization.

Although speed improvements appear to be pronounced with unbiased selec-

tion, the overall difference in the achieved fitness can be insignificant at best, and

significantly poorer at worst.

Due to the relative ease of implementation and current widespread usage of

the random tournament selection, it makes sense to continue to consider or use

this type of selection when designing a genetic algorithm. Additionally, the ease in

which this selection scheme can be parallelized lends an even stronger argument for

continued usage.

There are additional indications that the size of the chromosome population

could have a stronger impact than any other GA parameter. Additional work to

determine what that impact might be would be further helpful in making informed

decisions about GA design. The banding behaviour based on the chromosomal

population size suggests that there may be optimal population sizes based on the

length of tour or other factors.

17
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