• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Proving correctness of actor systems using FIFO communication

    Author
    Dunn, Ian W.
    Thumbnail
    View/Open
    172604_Dunn_rpi_0185N_10333.pdf (344.4Kb)
    Other Contributors
    Varela, Carlos A.; Stewart, Charles V.; Milanova, Ana;
    Date Issued
    2014-05
    Subject
    Computer science
    Degree
    MS;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/1087
    Abstract
    We are developing a hierarchy of theories to reason about actor systems, with the ability to reuse proofs formalized at an abstract level in reasoning about concrete actor programs. Several actor languages, e.g., the ABCL family of languages, implement First-In First-Out (FIFO) communication between actors. Furthermore, many practical systems require FIFO communication for correctness. In previous work, Musser and Varela formalized properties including monotonicity of actor local states, guaranteed message delivery, and general consequences of fairness. While the actor model requires fairness, it does not require FIFO communication.; We continue on to show an example of an actor system, based on the computation of the Sieve of Eratosthenes, that requires FIFO communication in order to be able to prove correctness of its computation.; The third new theory begins to prove the ordering of messages given an order of the sequence numbers. We use results from the first two theories to show that if two messages are about to be sent or received, then the order in which the messages are sent or received is dictated by the sequence numbers. We then use that result to show that two messages must be received in the same order in which they were sent.; We introduce three new theories into the actor model framework of Athena. All three of these theories are developed at the abstract level, enabling the use of them in many concrete programs. The first two of these theories introduce sequence numbers into the messages passed between actors, one for sending and one for receiving. We take advantage of the monotonicity of actor transitions to show that send sequence numbers and receive sequence numbers will only ever increase.; In this thesis, we extend the actor reasoning framework to enable proving correctness of systems which require FIFO communication. This is done by extending the actor framework within the Athena proof system, in which proofs are both human-readable and machine-checkable, taking advantage of its library of algebraic and relational theories.;
    Description
    May 2014; School of Science
    Department
    Dept. of Computer Science;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.;
    Collections
    • RPI Theses Online (Complete)
    • RPI Theses Open Access

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV