• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A multi-material 3D printing system and model-based layer-to-layer control algorithm for ink-jet printing process

    Author
    Zheng, Jian
    Thumbnail
    View/Open
    172610_Zheng_rpi_0185N_10321.pdf (27.90Mb)
    Other Contributors
    Mishra, Sandipan; Julius, Anak Agung; Sanderson, A. C. (Arthur C.); Wu, Wencen;
    Date Issued
    2014-05
    Subject
    Electrical engineering
    Degree
    MS;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/1089
    Abstract
    To address this issue, we propose a model-based feedback control law for ink-jet 3D printing that uses a height sensor for measuring profile height after each layer for determining the appropriate layer patterns for subsequent layers. Towards this goal, a simple model describing the relationship between profile height change and droplet deposition in the layer building process is first proposed and experimentally identified. Based on this model, a closed-loop layer-to-layer control algorithm is then developed for the ink-jet printing process. Specifically, the proposed algorithm uses a model prediction control algorithm to minimize the difference between the predicted height and the desired height and the predicted surface unevenness after a fixed number of layers. Experimental and simulation results show that the algorithm is able to achieve more consistent shapes between layers, reduced edge shrinking of the part, and smoother surface of the top layer.; The objective of this thesis is to develop a novel, multi-material 3D printing system to manufacture laminated nano-composite structures with consistent layer height and satisfactory top surface evenness. The 3D printing technology presented in this paper integrates ink-jet printing of ultraviolet curable materials and deposition of nano-fibers. As the key process of this multi-material 3D printer, the performance of ink-jet 3D printing largely determines the overall performance of the multi-material 3D printing system. However, in traditional ink-jet 3D printing, the part is built up by depositing droplets layer upon layer in an open-loop manner. Droplet and edge dimensions are typically predicted experimentally and are assumed to remain constant through the printing process. But there is no guarantee of consistency of droplet shape and dimensions or the smoothness of the finished parts due to uncertainties in the manufacturing process.;
    Description
    May 2014; School of Engineering
    Department
    Dept. of Electrical, Computer, and Systems Engineering;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.;
    Collections
    • RPI Theses Online (Complete)
    • RPI Theses Open Access

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV