Show simple item record

dc.rights.licenseUsers may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.
dc.contributorOehlschlaeger, Matthew A.
dc.contributorBorca-Tasçiuc, Theodorian
dc.contributorKoratkar, Nikhil A.
dc.contributorPlawsky, Joel L., 1957-
dc.contributor.authorGerken, William James
dc.date.accessioned2021-11-03T08:12:46Z
dc.date.available2021-11-03T08:12:46Z
dc.date.created2014-10-08T10:24:42Z
dc.date.issued2014-08
dc.identifier.urihttps://hdl.handle.net/20.500.13015/1168
dc.descriptionAugust 2014
dc.descriptionSchool of Engineering
dc.description.abstractA model was developed to describe the evaporation of the nanofluid pendant drops based on D-square law analysis for the gas domain and a description of the reduction in liquid fraction available for evaporation due to nanoparticle agglomerate packing near the evaporating drop surface. Model predictions are in relatively good agreement with experiment, within a few percent of measured nanofluid pendant drop evaporation rate.
dc.description.abstractThe evaporation of pinned nanofluid sessile drops was also considered via modeling. It was found that the same mechanism for nanofluid evaporation rate reduction used to explain pendant drops could be used for sessile drops. That mechanism is a reduction in evaporation rate due to a reduction in available ethanol for evaporation at the drop surface caused by the packing of nanoparticle agglomerates near the drop surface. Comparisons of the present modeling predictions with sessile drop evaporation rate measurements reported for nAl/ethanol nanofluids by Sefiane and Bennacer [11] are in fairly good agreement.
dc.description.abstractPortions of this abstract previously appeared as:
dc.description.abstractW. J. Gerken, A. V. Thomas, N. Koratkar and M. A. Oehlschlaeger, Int. J. Heat Mass Transfer, vol. 74, no. 1, pp. 263-268, July 2014.
dc.description.abstractW. J. Gerken, M. A. Oehlschlaeger, "Nanofluid Pendant Droplet Evaporation", in Proceedings of the ASME 2013 Summer Heat Transfer Conference, Minneapolis, MN, 2013, pp. V001T03A018.
dc.description.abstractNanofluids, stable colloidal suspensions of nanoparticles in a base fluid, have potential applications in the heat transfer, combustion and propulsion, manufacturing, and medical fields. Experiments were conducted to determine the evaporation rate of room temperature, millimeter-sized pendant drops of ethanol laden with varying amounts (0-3% by weight) of 40-60 nm aluminum nanoparticles (nAl). Time-resolved high-resolution drop images were collected for the determination of early-time evaporation rate (D2/D02 > 0.75), shown to exhibit D-square law behavior, and surface tension. Results show an asymptotic decrease in pendant drop evaporation rate with increasing nAl loading. The evaporation rate decreases by approximately 15% at around 1% to 3% nAl loading relative to the evaporation rate of pure ethanol. Surface tension was observed to be unaffected by nAl loading up to 3% by weight.
dc.language.isoENG
dc.publisherRensselaer Polytechnic Institute, Troy, NY
dc.relation.ispartofRensselaer Theses and Dissertations Online Collection
dc.subjectAeronautical engineering
dc.titleNanofluid drop evaporation : experiment, theory, and modeling
dc.typeElectronic thesis
dc.typeThesis
dc.digitool.pid172929
dc.digitool.pid172930
dc.digitool.pid172931
dc.rights.holderThis electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
dc.description.degreePhD
dc.relation.departmentDept. of Mechanical, Aerospace, and Nuclear Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record