Real-time implementation of an interactive jazz accompaniment system

Authors
Deshpande, Nikhil
ORCID
Loading...
Thumbnail Image
Other Contributors
Braasch, Jonas
Krueger, Ted (Theodore Edward), 1954-
Saunders, Andrew
Issue Date
2014-08
Keywords
Architecture
Degree
MS
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
Modern computational algorithms and digital signal processing (DSP) are able to combine with human performers without forced or predetermined structure in order to create dynamic and real-time accompaniment systems. With modern computing power and intelligent algorithm layout and design, it is possible to achieve more detailed auditory analysis of live music. Using this information, computer code can follow and predict how a human's musical performance evolves, and use this to react in a musical manner. This project builds a real-time accompaniment system to perform together with live musicians, with a focus on live jazz performance and improvisation. The system utilizes a new polyphonic pitch detector and embeds it in an Ableton Live system - combined with Max for Live - to perform elements of audio analysis, generation, and triggering. The system also relies on tension curves and information rate calculations from the Creative Artificially Intuitive and Reasoning Agent (CAIRA) system to help understand and predict human improvisation. These metrics are vital to the core system and allow for extrapolated audio analysis. The system is able to react dynamically to a human performer, and can successfully accompany the human as an entire rhythm section.
Description
August 2014
School of Architecture
Department
School of Architecture
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.