• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Semantic driven data migration for predictive treatment of major depressive disorder

    Author
    Ashby, Brendan Evans
    Thumbnail
    View/Open
    174628_Ashby_rpi_0185N_10477.pdf (2.995Mb)
    174629_HamiltonDepressionScale_ashbyb_thesis_publish_v0_1_2.owl.txt (170.5Kb)
    Other Contributors
    Varela, Carlos A.; Luciano, Joanne S.; Krishnamoorthy, M. S.;
    Date Issued
    2014-12
    Subject
    Computer science
    Degree
    MS;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/1252
    Abstract
    SEMMDD is a collection of researchers working to improve treatment for Major Depressive Disorder. Specifically, focus is put on accurately modeling patient response to various depression therapies. This paper contributes to this ongoing research through two main bodies of work. First, a process is described that migrates traditional tabular datasets into a decentralized web of knowledge known as the Semantic Web. Data migration is achieved by employing World Wide Web Consortium open standards and best practices. Datasets altered in this way benefit by increasing their exposure to like-minded content creators and lowering the learning curve for others to become involved. Additionally, I explain how this process fulfills the need for a data migration system that facilitates effective data proliferation along with exhaustive provenance capture. The second body of work tasked Machine Learning algorithms to make predictions for a patient's ultimate response to therapy based on their initial depressive state. As a result, I make recommendations concerning which algorithm configurations best fit the depression data and where future modeling efforts can best be focused. Machine Learning algorithms were utilized to give an alternate perspective to modeling patient treatment response in comparison to a historical use of neural network modeling. This recent body of work contributes to a larger initiative working to empower clinicians with the tools necessary to prescribe medical treatment. Armed with this knowledge, clinicians can make treatment decisions based more on historical trends seen in data and less on anecdotal experience.;
    Description
    December 2014; School of Science
    Department
    Dept. of Computer Science;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.;
    Collections
    • RPI Theses Online (Complete)
    • RPI Theses Open Access

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV