Show simple item record

dc.rights.licenseCC BY-NC-ND. Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.
dc.contributorShi, Yunfeng
dc.contributorHuang, Liping
dc.contributorKeblinski, Pawel
dc.contributorSchadler, L. S. (Linda S.)
dc.contributorPicu, Catalin R.
dc.contributor.authorLuo, Jian
dc.date.accessioned2021-11-03T08:17:04Z
dc.date.available2021-11-03T08:17:04Z
dc.date.created2015-03-09T09:49:59Z
dc.date.issued2014-12
dc.identifier.urihttps://hdl.handle.net/20.500.13015/1261
dc.descriptionDecember 2014
dc.descriptionSchool of Engineering
dc.description.abstractMetallic glasses (MGs) are an emerging class of structural materials that can achieve a combination of striking mechanical properties, such as high strength, large elastic limit, high fracture toughness, plastic-like processability, etc. However, the wide application of MGs in daily life is largely hindered by their extreme tensile brittleness and the uncertainty in their fatigue behavior. The underlying failure mechanisms are experimentally intractable due to spatiotemporal limitations.
dc.description.abstractHere, we designed several novel atomic simulation methods to reveal atomic insights on the tensile and fatigue failure mechanisms. Under tension, we found that the failure of MGs is triggered by cavitation and that the fast shear flow can decrease MGs' resistance to cavitation by a surprisingly large amount, which explains the extreme tensile brittleness. Under cyclic loading, we found that the life of MG nanowires follows the Coffin-Manson relationship, which can be further derived from the plastic strain controlled microscopic damage accumulation. By force field tuning methods, we demonstrated that the propensity of both the tensile brittleness and the fatigue failure of MGs is correlated with Poisson's ratio and the degree of covalency in the bonding. The atomic insights discovered here shed light on how to improve the tensile ductility and reliability of MGs, via tuning the elastic properties, thermal properties and sample size.
dc.language.isoENG
dc.publisherRensselaer Polytechnic Institute, Troy, NY
dc.relation.ispartofRensselaer Theses and Dissertations Online Collection
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectMaterials science and engineering
dc.titleFailure mechanisms of metallic glasses via atomic scale simulations
dc.typeElectronic thesis
dc.typeThesis
dc.digitool.pid174655
dc.digitool.pid174656
dc.digitool.pid174657
dc.rights.holderThis electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
dc.description.degreePhD
dc.relation.departmentDept. of Materials Science and Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND. Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.
Except where otherwise noted, this item's license is described as CC BY-NC-ND. Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.