Show simple item record

dc.rights.licenseRestricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.
dc.contributorAmitay, Michael
dc.contributorHicken, Jason
dc.contributorSahni, Onkar
dc.contributor.authorSivaneri, Victor
dc.date.accessioned2021-11-03T08:17:11Z
dc.date.available2021-11-03T08:17:11Z
dc.date.created2015-03-09T09:51:15Z
dc.date.issued2014-12
dc.identifier.urihttps://hdl.handle.net/20.500.13015/1264
dc.descriptionDecember 2014
dc.descriptionSchool of Engineering
dc.description.abstractThe present work aims to identify, quantify, and understand the physics by which three-dimensional stall cells are formed on two-dimensional airfoils, using oil flow visualization, load cells, and Stereoscopic Particle Image Velocimetry (SPIV). The oil flow visualizations were conducted on two-dimensional NACA 0015 and NACA 0009 airfoils, at angles of attack ranging from 14° to 20°, Reynolds numbers ranging from 1.70x105to 4.20x105, and aspect ratios of 4, 6.67, and 13.33. Load cell data was conducted on a NACA 0015 airfoil, at angles of attack ranging from 0° to 20°, Reynolds numbers ranging from 1.70x105 to 4.20x105, and an aspect ratio of 4. SPIV experiments were conducted on a on a stalled two-dimensional NACA-0015, pitched to 18° angle of attack, at four Reynolds numbers ranging from 1.70x105 to 4.20x105. Oil flow visualizations were used for both qualitatively identify the stall cells and to calculate the near-surface skin friction field. The results showed that, the angle of attack, Reynolds number, aspect ratio, and the airfoil shape and thickness had a pronounced effect on the formation of stall cells. In order to understand the formation of stall cells, the effect of adding a passive disturbance, a zig-zag tape that attached to the airfoil's surface, was explored. The results showed that under some conditions, adding either a two-dimensional or a localized disturbance could alter the shape of the separation and yield the formation of stall cells. In addition, wall-mounted load cells were used to measure the lift and drag on the airfoil, in the presence or absence of stall cells. Finally, the SPIV measurements correlated the flow field over the airfoil with the oil flow visualization on the surface.
dc.language.isoENG
dc.publisherRensselaer Polytechnic Institute, Troy, NY
dc.relation.ispartofRensselaer Theses and Dissertations Online Collection
dc.subjectAeronautical engineering
dc.titleMeasurement and formation of three-dimensional stall cells on two-dimensional airfoils
dc.typeElectronic thesis
dc.typeThesis
dc.digitool.pid174662
dc.digitool.pid174664
dc.digitool.pid174666
dc.rights.holderThis electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
dc.description.degreeMS
dc.relation.departmentDept. of Mechanical, Aerospace, and Nuclear Engineering


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record