[[The]] retrotransposon Ty1 extends chronological lifespan in Saccharomyces paradoxus by influencing cellular responses to stress

Authors
VanHoute, David Richard
ORCID
Loading...
Thumbnail Image
Other Contributors
Maxwell, Patrick H.
Collins, Cynthia H.
Conklin, Douglas
Gilbert, Susan P.
Issue Date
2015-05
Keywords
Biology
Degree
PhD
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
Advancing age of the global population is resulting in an increase in the accumulation of age-related pathologies. Many potential molecular and cellular causes of aging are still being debated. Endogenous retroelements are a class of mobile DNA elements that have coexisted in the genomes of virtually every eukaryotic organism for much of evolution. Recent work indicates that retrotransposons are active in advanced age but their impact on aging has not been explored in detail. Evidence is accumulating to suggest that retrotransposon-mediated events are a potential source of genomic change that can influence aging. In this study I took advantage of a unique yeast model system to characterize aging in cells with or without Ty1 retroelements. I identify here a novel role of retroelements in extending yeast chronological lifespan in certain media conditions, rather than observing an anticipated pro-aging effect. This effect was correlated with changes in factors known to influence aging such as mitochondrial function, reactive oxygen species, and sensitivity to a chemical inhibitor of nutrient sensing pathways. These results demonstrate that the presence of these retroelements have unforeseen direct or indirect roles in influencing cellular processes relevant to lifespan. The ability of retrotransposons to regulate cellular functions has not been well investigated, in contrast to the ability of cellular pathways to regulate retrotransposons. The work here broadens our perspective on the role retrotransposons have in host cells to influence certain aspects of eukaryotic aging.
Description
May 2015
School of Science
Department
Dept. of Biological Sciences
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.