• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Online (Complete)
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Online (Complete)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Directed self-assembly of mesoscopic components for LED applications

    Author
    Tkachenko, Anton
    View/Open
    176017_Tkachenko_rpi_0185E_10651.pdf (9.601Mb)
    176018_movie_S1.avi (10.27Mb)
    176019_movie_S2.avi (8.273Mb)
    176020_movie_S3.avi (7.228Mb)
    176021_movie_S4.avi (13.80Mb)
    Other Contributors
    Lu, James; Karlicek, Robert F.; Huang, Zhaoran Rena; Plawsky, Joel L., 1957-;
    Date Issued
    2015-05
    Subject
    Electrical engineering
    Degree
    PhD;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/1482
    Abstract
    Through this thesis work, it was demonstrated that assembly in liquid using ferromagnetic dies can be done either with high speed or with high yield, but not with both at the same time. DSA using diamagnetic levitation offers a way to achieve both through a careful design of magnetic field, thickness and quality of diamagnetic material (graphite) as well as proper selection of vibration pattern. This DSA process can enable large-area parallel assembly of millimeter and sub-millimeter components for manufacturing of LED panels, displays and microcell photovoltaics.; Light-emitting diodes (LEDs) constitute a rapidly evolving and fast growing technology that promises to replace incandescent bulbs and compact fluorescent lights in many illumination applications. Large-area LED luminaires have a capability to transform lighting by providing a venue for development of smart lighting systems with additional benefits, such as visible light communications, sensing, health and productivity improvement through color temperature control, capability of creating "virtual sky" ceiling, and many others. The objective of this work is to explore directed self-assembly (DSA) approaches suitable for cost-effective assembly of large amount of LEDs and other mesoscopic (i.e. millimeter and sub-millimeter) electronic components and thus to enable manufacturing of smart lighting luminaires.; Existing alternative approaches for assembly of semiconductor dies are examined including transfer printing, laser-assisted die transfer, and various directed self-assembly approaches using shape-recognition, magnetic and capillary forces, etc. After comparing their advantages and limitations, we developed two approaches to magnetic force-assisted DSA of LEDs on a large-area substrate in liquid and air medium.; The first approach involves pick-up of buoyant and magnetic dies from the liquid surface onto the flexible substrate in a roll-to-roll process. The possibility of high-speed assembly of LED dies is demonstrated, but with a low yield due to the influence of the capillary force of the carrier liquid and the difficulty in ensuring reliable supply of dies to the assembly interface. To overcome the aforementioned challenges this process was modified to assemble the dies by sinking them onto the receiving substrate with a stencil mask on top, demonstrating LED assembly with a very low error rate but at a lower speed. A solder-assisted self-alignment is used to further improve placement precision and to ensure the proper orientation of the dies.; The second approach involves self-assembly of dies in an air medium by levitating them in a periodic magnetic field. Using only vibration in z-direction with properly selected waveforms, both high-yield and high-speed DSA was demonstrated. Magnetostatic simulations were used to demonstrate scaling of DSA process with the die size while a model based on a 2D random walk was used to show how the assembly time scales with the number of dies and how this scaling law can be improved. These results indicate that this process can scale well both with the die size and with the number of assembled dies.;
    Description
    May 2015; School of Engineering
    Department
    Dept. of Electrical, Computer, and Systems Engineering;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.;
    Collections
    • RPI Theses Online (Complete)

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV