• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Online (Complete)
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Online (Complete)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Idealized models of insect olfaction

    Author
    Pyzza, Pamela Beth
    View/Open
    176781_Pyzza_rpi_0185E_10693.pdf (21.43Mb)
    Other Contributors
    Kovacic, Gregor; Cai, David; Kramer, Peter Roland, 1971-; Holmes, Mark H.;
    Date Issued
    2015-08
    Subject
    Mathematics
    Degree
    PhD;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/1548
    Abstract
    When a locust detects an odor, the stimulus triggers a specific sequence of network dynamics of the neurons in its antennal lobe. The odor response begins with a series of synchronous oscillations, followed by a short quiescent period, with a transition to slow patterning of the neuronal firing rates, before the system finally returns to a background level of activity.; We begin modeling this behavior using an integrate-and-fire neuronal network, composed of excitatory and inhibitory neurons, each of which has fast-excitatory, and fast- and slow-inhibitory conductance responses. We further derive a coarse-grained, firing-rate model for each (excitatory and inhibitory) neuronal population, which allows for more detailed analysis of and insight into the plausible olfaction mechanisms seen in experiments, prior models, and our numerical model. We conclude that the transition of the network dynamics through fast oscillations, a pause in network activity, and the slow modulation of firing rates can be described by system which has a limit cycle of the fast variables, slowly passes through a saddle-node-on-a-circle bifurcation eliminating the oscillations, and, eventually, slowly passes again through the bifurcation point, producing a new limit cycle with a slower period.; In this thesis, we design a sequence of Idealized models of insect olfaction. Modeling insect olfaction is motivated by the fact that olfactory systems appear structurally and functionally similar across phyla ranging from insects to mammals, such as humans. One particularly well-studied insect is the locust, whose olfaction dynamics exhibit strong similarities with those of mammals.;
    Description
    August 2015; School of Science
    Department
    Dept. of Mathematical Sciences;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.;
    Collections
    • RPI Theses Online (Complete)

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV