Idealized models of insect olfaction

Authors
Pyzza, Pamela Beth
ORCID
Loading...
Thumbnail Image
Other Contributors
Kovacic, Gregor
Cai, David
Kramer, Peter Roland, 1971-
Holmes, Mark H.
Issue Date
2015-08
Keywords
Mathematics
Degree
PhD
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
We begin modeling this behavior using an integrate-and-fire neuronal network, composed of excitatory and inhibitory neurons, each of which has fast-excitatory, and fast- and slow-inhibitory conductance responses. We further derive a coarse-grained, firing-rate model for each (excitatory and inhibitory) neuronal population, which allows for more detailed analysis of and insight into the plausible olfaction mechanisms seen in experiments, prior models, and our numerical model. We conclude that the transition of the network dynamics through fast oscillations, a pause in network activity, and the slow modulation of firing rates can be described by system which has a limit cycle of the fast variables, slowly passes through a saddle-node-on-a-circle bifurcation eliminating the oscillations, and, eventually, slowly passes again through the bifurcation point, producing a new limit cycle with a slower period.
Description
August 2015
School of Science
Department
Dept. of Mathematical Sciences
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.