• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Identifying humpback whale flukes by sequence matching of trailing edge curvature

    Author
    Jablons, Zachary
    Thumbnail
    View/Open
    177201_Jablons_rpi_0185N_10842.pdf (7.296Mb)
    Other Contributors
    Stewart, Charles V.; Cutler, Barbara M.; Yener, Bülent, 1959-;
    Date Issued
    2016-05
    Subject
    Computer science
    Degree
    MS;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/1653
    Abstract
    To our knowledge, this is the first method that can achieve this level of accuracy on humpback fluke identification without extensive manual effort at inference time.; Photographic identification of humpback whale (Megaptera novaeangliae) flukes (i.e. their tail) is an important task in marine ecology, and is used in tracking migration patterns and estimating populations. In this thesis, we lay out a method that automates the photo-identification of humpback flukes using the "trailing edge" of the fluke. The method uses convolutional networks to identify keypoints on the fluke and possible trailing edge locations. It then uses this information to extract a detailed trailing edge and its curvature, which is then matched to other trailing edges in the database via dynamic time warping. Using this method, we achieve nearly 80% top-1 ranking accuracy on a large subset of the SPLASH dataset consisting of about 400 identified individuals. We also show that in combination with HotSpotter, a general pattern based matching algorithm, we can achieve 93% accuracy.;
    Description
    May 2016; School of Science
    Department
    Dept. of Computer Science;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.;
    Collections
    • RPI Theses Online (Complete)
    • RPI Theses Open Access

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV