• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cognitive control of saccadic behavior in the antisaccade task : a model of voluntary and involuntary eye movements

    Author
    Hope, Ryan M.
    Thumbnail
    View/Open
    177267_Hope_rpi_0185E_10875.pdf (2.691Mb)
    Other Contributors
    Gray, Wayne D., 1950-; Schoelles, Michael J.; Fajen, Brett R.; Ji, Qiang, 1963-;
    Date Issued
    2016-05
    Subject
    Cognitive science
    Degree
    PhD;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/1678
    Abstract
    An important question now is how does a system based on automatic (involuntary) saccade timing still allow for top-down (voluntary) control, like that which is needed in the antisaccade task? In order to test this idea, a new model called ABS(Attention Biased Salience)-CRISP was created which builds upon the CRISP (Nuthmann, Smith, Engbert, & Henderson, 2010) model of saccade generation (which models the automatic saccade timer as a random walk process) by adding a spatial component that computes the saccade target location as the weighted sum of a bottom-up saliency map and a top-down attentional map. The CRISP and ABS-CRISP models were evaluated and compared to human performance in a mixed-block antisaccade task. The ABS-CRISP model was able to replicate individual distributions of saccade latencies that were indistinguishable from a majority of the subjects data. The results support the idea that the initiation of saccade timing is not tied to cognitive events that occur during fixations but instead, are triggered by a random timer. The results also support the idea that inter-individual, intra-individual and inter-task differences in performance can be explained, in large, by changes in the bias between bottom-up and top-down information in the spatial component of saccade programming.; Performance detriments in the antisaccade task have been linked to numerous psychiatric and neurological disorders yet, there is no consensus as to how healthy individuals perform the task. Most computational models of the antisaccade task assume that cue onset automatically triggers programming of a prosaccade towards the cue and that successfully performing an antisaccade away from the cue requires top-down inhibition of the erroneous prosaccade before a correct antisaccade can be made. However, a recent body of research on oculomotor control suggests that humans have much less control over their eye movements. Eye trackers have revealed that the eyes are in constant motion, even when fixating, and that these fixational eye movements are possibly functional. The growing consensus is that saccades are initiated automatically by a rhythmic trigger from the brainstem.;
    Description
    May 2016; School of Humanities, Arts, and Social Sciences
    Department
    Dept. of Cognitive Science;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.;
    Collections
    • RPI Theses Online (Complete)
    • RPI Theses Open Access

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV