Author
Seaman, Jared Hilliard
Other Contributors
Blanchet, Thierry A.; Tomozawa, Minoru; Picu, Catalin R.; Samuel, Johnson;
Date Issued
2016-05
Subject
Mechanical engineering
Degree
PhD;
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
Abstract
This thesis combines a number of studies that offer a new unified understanding of historical anomalous mechanical behaviors of glass. These anomalies are interpreted as simply the consequence of slow crack growth and water-assisted surface stress relaxation.; This thesis is concerned with analytically describing anomalous mechanical behaviors of glass. A new slow crack growth model is presented that considers a semi-elliptical crack in a cylindrical glass rod subjected to 4-point bending that is both loaded statically and under a time-dependent load. This model is used to explain a suppression of the loading-rate dependency of ion-exchanged strengthened glass. The stress relaxation behavior of an ion-exchanged strengthened glass is then analyzed in view of a newly observed water-assisted surface stress relaxation mechanism. By making refinements to a time-dependent Maxwell material model for stress buildup and relaxation, the anomalous subsurface compressive stress peak in ion-exchanged strengthened glass is explained. The notion of water-assisted stress relaxation is extended to the crack tip, where high tensile stresses exist. A toughening effect has historically been observed for cracks aged at subcritical stress intensity factors, where crack tip stress relaxation is hypothesized. A simple fracture mechanics model is developed that estimates a shielding stress intensity factor that is then superimposed with the far-field stress intensity factor. The model is used to estimate anomalous “restart” times for aged cracks. The same model predicts a non-linear crack growth rate for cracks loaded near the static fatigue limit. Double cantilever beam slow crack growth experiments were performed and new slow crack growth data for soda-lime silicate glass was collected. Interpretation of this new experimental slow crack growth data suggests that the origin of the static fatigue limit in glass is due to water-assisted stress relaxation.;
Description
May 2016; School of Engineering
Department
Dept. of Mechanical, Aerospace, and Nuclear Engineering;
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection;
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.;