dc.rights.license | Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries. | |
dc.contributor | Ji, Wei | |
dc.contributor | Liu, Li (Emily) | |
dc.contributor | Lian, Jie | |
dc.contributor | Morris, Heidi E. | |
dc.contributor | Nelson, Eric M. | |
dc.contributor.author | Pusateri, Elise Noel | |
dc.date.accessioned | 2021-11-03T08:38:15Z | |
dc.date.available | 2021-11-03T08:38:15Z | |
dc.date.created | 2016-09-27T14:05:21Z | |
dc.date.issued | 2016-08 | |
dc.identifier.uri | https://hdl.handle.net/20.500.13015/1731 | |
dc.description | August 2016 | |
dc.description | School of Engineering | |
dc.description.abstract | It is common for EMP simulation codes to use an equilibrium ohmic model for computing the conduction current. Equilibrium ohmic models assume the conduction electrons are always in equilibrium with the local instantaneous electric field, i.e. for a specific EMP electric field, the conduction electrons instantaneously reach steady state without a transient process. An equilibrium model will work well if the electrons have time to reach their equilibrium distribution with respect to the rise time or duration of the EMP. If the time to reach equilibrium is comparable or longer than the rise time or duration of the EMP then the equilibrium model would not accurately predict the conduction current necessary for the EMP simulation. This is because transport coefficients used in the conduction current calculation will be found based on equilibrium reactions rates which may differ significantly from their non-equilibrium values. We see this defficiency in Los Alamos National Laboratory's EMP code, CHAP-LA (Compton High Altitude Pulse-Los Alamos), when modeling certain EMP scenarios at high altitudes, such as upward EMP, where the ionization rate by secondary electrons is over predicted by the equilibrium model, causing the EMP to short abruptly. The objective of the PhD research is to mitigate this effect by integrating a conduction electron model into CHAP-LA which can calculate the conduction current based on a non-equilibrium electron distribution. | |
dc.description.abstract | The final part of the PhD thesis work includes integrating the swarm model into CHAP-LA. We discuss the physics included in the CHAP-LA EMP model and demonstrate EMP damping behavior caused by the ohmic model at high altitudes. We report on numerical techniques for incorporation of the swarm model into CHAP-LA’s Maxwell solver. This includes a discussion of integration techniques for Maxwell’s equations in CHAP-LA using the swarm model calculated conduction current. We show improvements on EMP parameter calculations when modeling a high altitude, upward EMP scenario. This provides a novel computational capability that will have an important impact on the atmospheric and EMP research community. | |
dc.description.abstract | The swarm model is also updated from the original HLO model by including additional physical parameters such as the O2 electron attachment rate, recombination rate, and mutual neutralization rate. This necessitates tracking the positive and negative ion densities in the swarm model. Adding these parameters, especially electron attachment, is important at lower EMP altitudes where atmospheric density is high. We compare swarm model equilibrium temperatures and times using the HLO and BOLSIG+ coefficients for a uniform electric field of 1 StatV/cm for a range of atmospheric heights. This is done in order to test sensitivity to the swarm parameters used in the swarm model. It is shown that the equilibrium temperature and time are sensitive to the modifications in the collision frequency and ionization rate based on the updated electron interaction cross sections. We validate the swarm model by comparing ionization coefficients and equilibrium drift velocities to experimental results over a wide range of reduced electric field values. | |
dc.description.abstract | A swarm model has been developed that is based on a previous swarm model developed by Higgins, Longmire and O'Dell 1973, hereinafter HLO. The code used for the swarm model calculation solves a system of coupled differential equations for electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, including the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are recalculated and compared to the previously reported empirical results given by HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford 2005. BOLSIG+ utilizes updated electron scattering cross sections that are defined over an expanded energy range found in the atomic and molecular cross section database published by Phelps in the Phelps Database 2014 on the LXcat website created by Pancheshnyi et al. 2012. . | |
dc.description.abstract | An Electromagnetic Pulse (EMP) can severely disrupt the use of electronic devices in its path causing a significant amount of infrastructural damage. EMP can also cause breakdown of the surrounding atmosphere during lightning discharges. This makes modeling EMP phenomenon an important research effort in many military and atmospheric physics applications. EMP events include high-energy Compton electrons or photoelectrons that ionize air and produce low energy conduction electrons. A sufficient number of conduction electrons will damp or alter the EMP through conduction current. Therefore, it is important to understand how conduction electrons interact with air in order to accurately predict the EMP evolution and propagation in the air. | |
dc.description.abstract | We propose to use an electron swarm model to monitor the time evolution of conduction electrons in the EMP environment which is characterized by electric field and pressure. Swarm theory uses various collision frequencies and reaction rates to study how the electron distribution and the resultant transport coefficients change with time, ultimately reaching an equilibrium distribution. Validation of the swarm model we develop is a necessary step for completion of the thesis work. After validation, the swarm model is integrated in the air chemistry model CHAP-LA employs for conduction electron simulations. We test high altitude EMP simulations with the swarm model option in the air chemistry model to show improvements in the computational capability of CHAP-LA. | |
dc.language.iso | ENG | |
dc.publisher | Rensselaer Polytechnic Institute, Troy, NY | |
dc.relation.ispartof | Rensselaer Theses and Dissertations Online Collection | |
dc.subject | Nuclear engineering | |
dc.title | Improving high-altitude EMP modeling capabilities by using a non-equilibrium electron swarm model to monitor conduction electron evolution | |
dc.type | Electronic thesis | |
dc.type | Thesis | |
dc.digitool.pid | 177418 | |
dc.digitool.pid | 177419 | |
dc.digitool.pid | 177420 | |
dc.rights.holder | This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author. | |
dc.description.degree | PhD | |
dc.relation.department | Dept. of Mechanical, Aerospace, and Nuclear Engineering | |