[[The]] effect of micro alloying on the microstructure evolution of Sn-Ag-Cu lead-free solder

Authors
Werden, Jesse
ORCID
Loading...
Thumbnail Image
Other Contributors
Lewis, Daniel
Duquette, David J.
Watson, Bruce
Issue Date
2016-08
Keywords
Materials science and engineering
Degree
MS
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
The microelectronics industry is required to obtain alternative Pb-free soldering materials due to legal, environmental, and technological factors. As a joining material, solder provides an electrical and mechanical support in electronic assemblies and therefore, the properties of the solder are crucial to the durability and reliability of the solder joint and the function of the electronic device. One major concern with new Pb-free alternatives is that the microstructure is prone to microstructural coarsening over time which leads to inconsistent properties over the device's lifetime. Power aging the solder is a common method of stabilizing the microstructure for Pb-based alloys, however, it is unclear if this will be an appropriate solution to the microstructural coarsening of Pb-free solders. The goal of this work is to develop a better understanding of the coarsening process in new solder alloys and to suggest methods of stabilizing the solder microstructure.
Description
August 2016
School of Engineering
Department
Dept. of Materials Science and Engineering
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.