Author
Valenti, Mark Edward
Other Contributors
Steiner, D.; Connor, Kenneth A.; Crowley, Thomas; Embrechts, Mark J.; Hickok, Robert L.;
Date Issued
1992-12
Subject
Nuclear engineering and science
Degree
PhD;
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
Abstract
A reflective source term is incorporated into the the Boltzmann neutral particle transport equation to account for boundary reflection. This reflective neutral model is integrated over a uniform axis and subsequently discretized. The discrete two-dimensional equations are solved iteratively with a computer code. The results of the reflective neutral model computer code are benchmarked with the neutral particle transport code ONEDANT. The benchmark process demonstrates the validity of the reflective neutral model. The reflective neutral model is coupled to the Braams plasma particle and energy transport code. The coupled system generates self-consistent plasma edge transport solutions. These solutions, which utilize the transport equation are similar to solutions which utilize simple plasma edge neutral models when high recycle divertors are modeled. In the high recycle mode, the high electron density at the divertor plate reduces the mean free path of plate neutrals. Hence the similarity in results. It is concluded that simple neutral models are sufficient for the analysis of high recycle power reactor edge plasmas. Low recycle edge plasmas were not examined.;
Description
December 1992; School of Engineering
Department
Dept. of Nuclear Engineering and Science;
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection;
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.;