• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Towards intelligent trajectory optimisation in astrodynamics

    Author
    Sprague, Christopher Iliffe
    Thumbnail
    View/Open
    178166_Sprague_rpi_0185N_11059.pdf (18.07Mb)
    Other Contributors
    Anderson, Kurt S.; Embrechts, Mark J.; Hicken, Jason; Oehlschlaeger, Matthew A.;
    Date Issued
    2017-05
    Subject
    Aeronautical engineering
    Degree
    MS;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/1938
    Abstract
    In this work trajectory optimisation is explored through four different avenues, namely: 1. Direct Methods, 2. Heuristics, 3. Reinforcement learning, 4. Supervised Learning Each method builds off of its preceding session. It is shown that each method poses the capability to be utilised for autonomous real-time optimal control in astrodynamics applications.; A housefly is a rather simple organism, yet it is able to independently make decisions to achieve its goals, such as navigating to a food-source and avoiding obstacles. Inspecting closer, a housefly is able to make these decisions instantaneously, such as in the case of being swatted at by a human. If one thinks about the descent of a landing capsule onto the Martian surface, the nature of the situation is quite the same. Because communication with Earth is prolonged, the lander must make decisions on its own in order to safely land on the surface. If a common housefly can independently make decisions in real-time, in uncertain dynamic environments, than surely a spacecraft should be able to do the same in an environment where the objective is clearly outlined.;
    Description
    May 2017; School of Engineering
    Department
    Dept. of Mechanical, Aerospace, and Nuclear Engineering;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.;
    Collections
    • RPI Theses Online (Complete)
    • RPI Theses Open Access

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV