Viscoelastic and dynamic properties of polymer nanocomposite systems : a molecular dynamics simulation study

Authors
Peng, Wei
ORCID
Loading...
Thumbnail Image
Other Contributors
Keblinski, Pawel
Ozisik, Rahmi
Shi, Yunfeng
Lee, Sangwoo.
Issue Date
2018-05
Keywords
Materials engineering
Degree
PhD
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
Recently, an unusual and unique property was observed in polymer nanocomposite systems by Senses et al. (Senses, E.; Isherwood, A.; Akcora, P. ACS Appl. Mater. Interfaces 2015, 7, 14682). These nanocomposite systems show stiffening behavior upon heating that is reversible and repeatable. This unique thermal stiffening behavior was attributed to the dynamic coupling of high glass transition (Tg) grafted chains and low-Tg matrix chains. To better study the stiffening mechanism, we first studied the viscoelasticity and dynamics of a model dynamically asymmetric binary polymer blend which consists of two type of chains with significantly different Tg.
Description
May 2018
School of Engineering
Department
Dept. of Materials Science and Engineering
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.