• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Online (Complete)
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Online (Complete)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cubesat dynamics and attitude control : Kane’s method, LQR, and Kalman filtering

    Author
    McKee, Paul Dickson
    View/Open
    179243_McKee_rpi_0185N_11371.pdf (1.839Mb)
    Other Contributors
    Anderson, Kurt S.; Christian, John; Mishra, Sandipan;
    Date Issued
    2018-08
    Subject
    Mechanical engineering
    Degree
    MS;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/2265
    Abstract
    This goal of this thesis is to bring together several relevant techniques and methods commonly used in Spacecraft Attitude Control Engineering for the purpose of designing and simulating a complete CubeSat Attitude Control System. The CubeSat in question includes three reaction wheels and a rotate-able solar array (all modeled), totaling 7 degrees of freedom. The complete equations of motion are derived using Kane's method, creating a mathematical model that can be simulated and controlled. Process noise and sensor noise are then added to the system, and their effects are mitigated through the use of a multiplicative extended Kalman Filter (MEKF). Finally, multiple control methods are explored, with an emphasis on Linear Quadratic Regulation (LQR) for fine-pointing steady-state accuracy. The complete controller is then put to the test to see how it fares in three realistic mission phases: initial de-tumble, solar array pointing, and long-term disturbance rejection. Success is demonstrated in all three mission phases.;
    Description
    August 2018; School of Engineering
    Department
    Dept. of Mechanical, Aerospace, and Nuclear Engineering;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.;
    Collections
    • RPI Theses Online (Complete)

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV