• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Formation and shearing of drops with applications in biophysics and bioprocessing

    Author
    Gulati, Shreyash
    Thumbnail
    View/Open
    179559_Gulati_rpi_0185E_11223.pdf (16.38Mb)
    Other Contributors
    Hirsa, Amir H.; Oehlschlaeger, Matthew A.; Sahni, Onkar; Henshaw, William D.; Lopez, Juan;
    Date Issued
    2017-12
    Subject
    Mechanical engineering
    Degree
    PhD;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/2367
    Abstract
    Drops are self-contained systems which do not need solid walls as surface tension provides containment. Solid walls can have associated issues such as sorption, chemical and electrostatic effects which can complicate the study of scientific phenomenon such as amyloid fibril formation. Amyloid fibrils are aggregates of protein that are generally associated with numerous neurodegenerative diseases, including Alzheimer's and Parkinson's. The containerless nature of drops motivated the ring-sheared drop (RSD) which is a platform for shearing of constrained drops through the action of surface shear viscosity. The ring-sheared drop will be used to study amyloidogenesis by utilizing the microgravity environment aboard the international space station (ISS) since microgravity enables testing with large-scale drops. Recently, the ring-sheared drop was also considered or analyzed for mixing within drops.; Further, the numerical results also demonstrated that the secondary motion effectively causes mixing within the drop. Such a surface shear viscosity based droplet mixing was found to be faster by at-least an order of magnitude as compared to the mixing produced in a diffusion-only (quiescent) case. Mixing produced by three configurations of the ring-sheared drop was assessed, namely steadily-driven single ring, oscillatory-driven single ring and steadily-driven counter rotating rings. Steadily-driven single ring produced the fastest mixing among the three configurations for the same Reynolds number (Re). However, at Re1 = 50, a range of oscillation frequencies 1.4 < omega < 9 was discovered for which the oscillatory-driven single ring case resulted in a faster mixing than the steadily-driven ring case. Hence, oscillatory driving can be tuned to achieve faster mixing than the steady driving. Steadily-driven counter rotating rings produced a slower mixing than one ring rotating steadily. Overall, it was concluded that RSD is an effective droplet mixer suitable for containerless applications in biophysics and bioprocessing.; This work presents a study of formation and shearing of constrained drops which are key scientific phenomena associated with the RSD. The formation of constrained drops as in the case of RSD was investigated both experimentally and computationally. Microgravity experiments performed aboard parabolic flights demonstrated successful formation and pinning of 10 mm diameter water drops. The computational model developed to simulate drop growth was validated against Earth-based (1 g) experiments. Also, it was found that the same computational model was able to predict the drop formation in microgravity. The shearing of constrained drops and resulting mixing within the drop were studied through numerical simulations of a 2.5 mm diameter drop. For benchmarking purposes, the numerical method used here was implemented on a knife-edge surface viscometer previously reported and the results were reproduced. The numerical results for the RSD showed that interfacial shear created by the differential rotation of the contact rings can produce azimuthal (primary) flow and meridional (secondary) flow through the action of surface shear viscosity.;
    Description
    December 2017; School of Engineering
    Department
    Dept. of Mechanical, Aerospace, and Nuclear Engineering;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.;
    Collections
    • RPI Theses Online (Complete)
    • RPI Theses Open Access

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV