Numerical and compact field effect transistor models validated for terahertz detection

Authors
Liu, Xueqing
ORCID
Loading...
Thumbnail Image
Other Contributors
Shur, Michael
Hella, Mona Mostafa
Dutta, Partha S.
Washington, Morris A.
Issue Date
2019-05
Keywords
Electrical engineering
Degree
PhD
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
In this thesis, we have developed numerical models for TeraFET detectors in Synopsys Sentaurus TCAD. The model is valid over a wide dynamic input range (from around 5 mV to 6 V). By examining the physical mechanisms in such TCAD models, experimentally-observed saturation effect at high intensity levels (above 1 V) can be understood. The effect is associated with different mechanisms depending on the material system including leakage current, velocity saturation, and avalanche effect. We also developed a compact SPICE model for heterostructure FET (HFET) THz detectors valid over a wide dynamic range (from around 1 mV to 7 V). The model incorporates the saturation effect at high intensity levels (above 1 V) by including leakage components. Furthermore, resonant detection for submicron high mobility devices are observed by including Drude inductance. The developed SPICE-compatible models for TeraFET detectors include channel segmentation and Drude inductance, and are valid from 0.1 THz to 10 THz. The developed model also show the significance of electron inertia at high THz frequencies for long channel devices. All developed models show good agreement with the analytical theory and experimental data and could be effectively used for the simulation, design, and characterization of sub-millimeter wave and Terahertz wave devices and integrated circuits.
Description
May 2019
School of Engineering
Department
Dept. of Electrical, Computer, and Systems Engineering
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.