Studies of G-quadruplex DNA aptamer discovery and proteomic profiling using a genome-inspired reverse selection approach

Authors
Morrissey, Kathleen L.
ORCID
Loading...
Thumbnail Image
Other Contributors
McGown, Linda Baine
Shelley, Jacob T., 1984-
Linhardt, Robert J.
Karande, Pankaj
Issue Date
2019-08
Keywords
Chemistry
Degree
PhD
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
This dissertation first focuses on the G-quadruplex forming promoter sequences from the oncogenes c-myc, Rb, and VEGF as potential aptamers using the genome-inspired reverse selection approach. The in vitro interaction of the promoter sequences with nuclear and cytoplasmic proteins from the triple negative breast cancer cell line MDA-MB-468 were studied and a number of proteins were identified that bind to the G-quadruplex forming sequences. Chromatin Immunoprecipitation (ChIP) was used to study the binding interaction of the promoter sequences with these proteins in live cells. These new DNA-protein interactions not only lead to new aptamers but also could identify new biomarkers not previously known in breast cancer and could play an important role in cancer therapy.
Description
August 2019
School of Science
Department
Dept. of Chemistry and Chemical Biology
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.