Molecular level modeling of batteries

Authors
Basu, Swastik
ORCID
Loading...
Thumbnail Image
Other Contributors
Koratkar, Nikhil A. A.
Shi, Yunfeng
Johnson, Samuel
Kopsaftopoulos, Fotis
Issue Date
2019-12
Keywords
Aeronautical engineering
Degree
PhD
Terms of Use
This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.
Full Citation
Abstract
Our study points to the key roles played by bonding covalency and structural disorder in giving rise to brittle and ductile regimes over the course of cycling a-Si electrode. Additionally, a novel reactive atomistic model is developed to study the continuum regimes of chemo-mechanical crack growth in brittle amorphous regimes, using a modified Lennard-Jones based pairwise force field. Finally, a combined molecular dynamics and Monte Carlo approach towards simulating key redox mechanisms of deposition and dissolution at battery interfaces is implemented, with design MD simulations to study minimum model of charge/discharge of an electrochemical cell.
Description
December 2019
School of Engineering
Department
Dept. of Mechanical, Aerospace, and Nuclear Engineering
Publisher
Rensselaer Polytechnic Institute, Troy, NY
Relationships
Rensselaer Theses and Dissertations Online Collection
Access
Restricted to current Rensselaer faculty, staff and students. Access inquiries may be directed to the Rensselaer Libraries.