• Login
    View Item 
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    •   DSpace@RPI Home
    • Rensselaer Libraries
    • RPI Theses Open Access
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A study of classification and embedding methods for identifying humpback whales

    Author
    Nouafo Wanko, Stéphane Junior
    Thumbnail
    View/Open
    180250_NouafoWanko_rpi_0185N_11780.pdf (565.4Kb)
    Other Contributors
    Stewart, Charles V; Cutler, Barbara M.; Gittens, Alex;
    Date Issued
    2020-08
    Subject
    Computer science
    Degree
    MS;
    Terms of Use
    This electronic version is a licensed copy owned by Rensselaer Polytechnic Institute, Troy, NY. Copyright of original work retained by author.;
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/2585
    Abstract
    The two approaches that we consider are a classification-based approach and an embedding-based one. We were able to achieve a top-1 accuracy of 83.0% for the classifier and of 80.5% when using embeddings. While both approaches showed good results towards identifying novel individuals, there were drawbacks and benefits to using one over the other. Most importantly, we show that a classification-based approach is most appropriate for quickly learning the weights for the used model. It also consistently performs better overall than the embedding-based approach. When using embeddings however, because of the use of an embedding function to acquire the feature vectors that represent our known individuals, there is the possibility to convert new individuals to known individuals without the need for retraining. We achieve a top-1 accuracy of 76.5% with our embedding approach on newly added individuals with no retraining. We also show that a trained classifier can be converted to an embedding model with no or minimal retraining needed.; Many current methods for the identification of individuals of a species do not consider the problem of identifying previously unseen individuals. To be used in a real-world setting, these methods must be able to recognize that all individuals they encounter will not all necessarily be part of the set of individuals the methods were trained to recognize. In this thesis, we explore two different approaches for the identification of new individuals.;
    Description
    August 2020; School of Science
    Department
    Dept. of Computer Science;
    Publisher
    Rensselaer Polytechnic Institute, Troy, NY
    Relationships
    Rensselaer Theses and Dissertations Online Collection;
    Access
    Users may download and share copies with attribution in accordance with a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. No commercial use or derivatives are permitted without the explicit approval of the author.;
    Collections
    • RPI Theses Online (Complete)
    • RPI Theses Open Access

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV