• Login
    View Item 
    •   DSpace@RPI Home
    • Tetherless World Constellation
    • Tetherless World Publications
    • View Item
    •   DSpace@RPI Home
    • Tetherless World Constellation
    • Tetherless World Publications
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Combining Supervised Machine Learning and Structured Knowledge for Difficult Perceptual Tasks

    Combining Supervised Machine Learning and Structured Knowledge for Difficult Perceptual Tasks

    Author
    Matthew Klawonn
    Thumbnail
    Other Contributors
    Date Issued
    2019; 2019-02-13
    Degree
    Terms of Use
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/4160; https://bit.ly/3hltGq7
    Abstract
    Learning models of visual perception lies at the heart of a number of computer vision problems, including object detection, image description, motion tracking, and more. There are a variety of models which may complete such tasks, though the tasks themselves are usually assumed to be consistent in their requirements: receive visual input, and perceive some desired content in said input. Yet for certain tasks, the desired outputs are very difficult to predict given input images alone. Many perceptual tasks require not only the ability to parse content of a visual scene, but also the ability to combine visual information with auxiliary knowledge to reach conclusions. Rather than attempt to incorporate auxiliary knowledge into the parameters of a learned model, this work presents an alternative approach.;
    Department
    Relationships
    Access
    Collections
    • Tetherless World Publications

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV