Poly-ion complex formation of heparin and tetrakis (3-aminopropyl) ammonium allows the sustained release of unfractionated heparin
Author
Ito, D.; Higashi, K.; Ge, D.; Kogure, N.; Terui, Y.; Linhardt, Robert J.; Toida, T.Other Contributors
Date Issued
2020Subject
Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineeringDegree
Terms of Use
CC BY : this license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. Credit must be given to the authors and the original work must be properly cited.; Attribution 3.0 United StatesFull Citation
Poly-ion complex formation of heparin and tetrakis (3-aminopropyl) ammonium allows the sustained release of unfractionated heparin, D. Ito, K. Higashi, D. Ge, N. Kogure, Y. Terui, R. J. Linhardt, T. Toida, Heliyon, 6, e05168, 2020.Metadata
Show full item recordAbstract
Physical mixtures of cationic polymers and heparin have been developed to overcome the limitations of unfractionated heparin. In this study, we found that heparin associates with natural polyamines in water, resulting in the generation of a poly-ion complex (PIC). PIC formation (or stability) was influenced by the concentration and ratio of heparin and polyamines, molecular weight of heparin, nature of polyamines, and pH conditions. Interestingly, the PIC obtained when heparin and tetrakis (3-aminopropyl) ammonium (Taa) were mixed exhibited stability and was sticky in nature. PIC formation was due to an electrostatic interaction between heparin and Taa. Heparin-Taa PIC was administered subcutaneously to mice, and the time to maximum heparin concentration within the therapeutic range of heparin was markedly increased compared to that after a single dose of heparin. These results suggest that the quaternary ammonium structure of Taa is critical for the preparation of a stable PIC, thereby allowing the sustained release of heparin into the blood.;Description
Heliyon, 6, e05168; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.Department
The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);Publisher
ElsevierRelationships
The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; https://harc.rpi.edu/;Access
CC BY — Creative Commons Attribution; A full text version is available in DSpace@RPI; Open Access;Collections
The following license files are associated with this item: