Show simple item record

dc.rights.licenseCC BY — Creative Commons Attribution
dc.contributor.authorYan, Lufeng
dc.contributor.authorLi, Lingyun
dc.contributor.authorLi, Junhui
dc.contributor.authorYu, Yanlei
dc.contributor.authorLiu, Xinyue
dc.contributor.authorYe, Xingqian
dc.contributor.authorLinhardt, Robert J.
dc.contributor.authorChen, Shiguo
dc.identifier.citationBottom-up analysis using liquid chromatography-Fourier transform mass spectrometry to characterize fucosylated chondroitin sulfates from sea cucumbers, L. Yan, L. Li, J. Li, Y. Yu, X. Liu, X. Ye, R. J. Linhardt, S. Chen, Glycobiology 29, 755–764, 2019.
dc.descriptionGlycobiology 29, 755–764
dc.descriptionNote : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
dc.description.abstractFucosylated chondroitin sulfates (FCSs) from sea cucumbers have repetitive structures that exhibit minor structural differences based on the organism from which they are recovered. A detailed characterization of FCSs and their derivatives is important to establish their structure–activity relationship in the development of new anticoagulant drugs. In the current study, online hydrophilic interaction chromatography–Fourier transform mass spectrometry (FTMS) was applied to analyze the FCS oligosaccharides generated by selective degradation from four species of sea cucumbers, Isostichopus badionotus, Pearsonothuria graeffei, Holothuria mexicana and Acaudina molpadioides. These depolymerized FCS fragments were quantified and compared using the glycomics software package, GlycReSoft. The quantified fragments mainly had trisaccharide-repeating compositions and showed significant differences in fucosylation (including its sulfation) among different species of sea cucumbers. Detailed analysis of FTMS ion peaks and top-down nuclear magnetic resonance spectroscopy of native FCS polysaccharides verified the accuracy of this method. Thus, a new structural model for FCS chains from these different sea cucumbers was defined. This bottom-up approach provides rich detailed structural analysis and provides quantitative information with high accuracy and reproducibility and should be suitable for the quality control in FCSs as well as their oligosaccharides.
dc.publisherOxford University Press
dc.relation.ispartofThe Linhardt Research Labs Online Collection
dc.relation.ispartofRensselaer Polytechnic Institute, Troy, NY
dc.rightsAttribution 3.0 United States*
dc.subjectChemistry and chemical biology
dc.subjectChemical and biological engineering
dc.subjectBiomedical engineering
dc.titleBottom-up analysis using liquid chromatography-Fourier transform mass spectrometry to characterize fucosylated chondroitin sulfates from sea cucumbersen_US
dcterms.accessRightsA full text version is available in DSpace@RPI
dcterms.accessRightsOpen Access
dc.rights.holderCC BY : this license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. Credit must be given to the authors and the original work must be properly cited.
dc.relation.departmentThe Linhardt Research Labs.
dc.relation.departmentThe Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)

Files in this item


This item appears in the following Collection(s)

Show simple item record

CC BY — Creative Commons Attribution
Except where otherwise noted, this item's license is described as CC BY — Creative Commons Attribution