Show simple item record

dc.rights.licenseCC BY — Creative Commons Attribution
dc.contributor.authorLi, Peiqin
dc.contributor.authorLinhardt, Robert J.
dc.contributor.authorCao, Zhimin
dc.date2016
dc.date.accessioned2022-06-21T18:01:44Z
dc.date.available2022-06-21T18:01:44Z
dc.date.issued2016-12-10
dc.identifier.citationStructural Characterization of Oligochitosan Elicitor from Fusarium sambucinum and its Elicitation of Defensive Responses in Zanthoxylum bungeanum, P. Li, R. J. Linhardt, Z. Cao International Journal of Molecular Sciences, 17, 2076, 2016.
dc.identifier.issn14220067
dc.identifier.issn16616596
dc.identifier.urihttps://hdl.handle.net/20.500.13015/5087
dc.identifier.urihttps://doi.org/10.3390/ijms17122076
dc.descriptionInternational Journal of Molecular Sciences, 17, 2076
dc.descriptionNote : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
dc.description.abstractOligosaccharide elicitors from pathogens have been shown to play major roles in host plant defense responses involving plant-pathogen chemoperception and interaction. In the present study, chitosan and oligochitosan were prepared from pathogen Fusarium sambucinum, and their effects on infection of Zanthoxylum bungeanum stems were investigated. Results showed that oligochitosan inhibited the infection of the pathogen, and that the oligochitosan fraction with a degree of polymerization (DP) between 5 and 6 showed the optimal effect. Oligochitosan DP5 was purified from fraction DP5-6 and was structurally characterized using electrospray ionization mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Oligochitosan DP5 showed significant inhibition against the infection of the pathogenic fungi on host plant stems. An investigation of the mechanism underlying this effect showed that oligochitosan DP5 increased the activities of defensive enzymes and accumulation of phenolics in host Z. bungeanum. These results suggest that oligochitosan from pathogenic fungi can mediate the infection of host plants with a pathogen by acting as an elicitor that triggers the defense system of a plant. This information will be valuable for further exploration of the interactions between the pathogen F. sambucinum and host plant Z. bungeanum.
dc.description.sponsorshipNational Natural Science Foundation of China
dc.languageen_US
dc.language.isoENG
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.relation.ispartofThe Linhardt Research Labs Online Collection
dc.relation.ispartofRensselaer Polytechnic Institute, Troy, NY
dc.relation.ispartofInternational Journal of Molecular Sciences
dc.relation.urihttps://harc.rpi.edu/
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectBiology
dc.subjectChemistry and chemical biology
dc.subjectChemical and biological engineering
dc.subjectBiomedical engineering
dc.titleStructural Characterization of Oligochitosan Elicitor from Fusarium sambucinum and its Elicitation of Defensive Responses in Zanthoxylum bungeanumen_US
dc.typeArticle
dcterms.accessRightsA full text version is available in DSpace@RPI
dcterms.accessRightsOpen Access
dcterms.isPartOfJournal
dcterms.isVersionOfhttps://doi.org/10.3390/ijms17122076
dc.rights.holderCC BY : this license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. Credit must be given to the authors and the original work must be properly cited.
dc.creator.identifierhttps://orcid.org/0000-0003-2219-5833
dc.relation.departmentThe Linhardt Research Labs.
dc.relation.departmentThe Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
rpi.description.volume17


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY — Creative Commons Attribution
Except where otherwise noted, this item's license is described as CC BY — Creative Commons Attribution