A New Glycosaminoglycan from the Giant African Snail Achatina fulica
Author
Kim, Y.S.; Jo, Y.T.; Chang, I.M.; Toida, T.E.; Park, Y.; Linhardt, Robert J.Other Contributors
Date Issued
1996Subject
Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineeringDegree
Terms of Use
CC BY : this license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. Credit must be given to the authors and the original work must be properly cited.; Attribution 3.0 United StatesFull Citation
A New Glycosaminoglycan from the Giant African Snail Achatina fulica, Y.S. Kim, Y.T. Jo, I.M. Chang, T. E. Toida, Y. Park, R.J. Linhardt, Journal of Biological Chemistry, 271, 11750-11755, 1996.Metadata
Show full item recordAbstract
A new glycosaminoglycan has been isolated from the giant African snail Achatina fulica. This polysaccharide had a molecular weight of 29,000, calculated based on the viscometry, and a uniform repeating disaccharide structure of -->4)-2-acetyl,2-deoxy-alpha-D-glucopyranose (1-->4)-2-sulfo-alpha-L-idopyranosyluronic acid (1-->. This polysaccharide represents a new, previously undescribed glycosaminoglycan. It is related to the heparin and heparan sulfate families of glycosaminoglycans but is distinctly different from all known members of these classes of glycosaminoglycans. The structure of this polysaccharide, with adjacent N-acetylglucosamine and 2-sulfo-iduronic acid residues, also poses interesting questions about how it is made in light of our current understanding of the biosynthesis of heparin and heparan sulfate. This glycosaminoglycan represents 3-5% of the dry weight of this snail's soft body tissues, suggesting important biological roles for the survival of this organism, and may offer new means to control this pest. Snail glycosaminoglycan tightly binds divalent cations, such as copper(II), suggesting a primary role in metal uptake in the snail. Finally, this new polysaccharide might be applied, like the Escherichia coli K5 capsular polysaccharide, to the study of glycosaminoglycan biosynthesis and to the semisynthesis of new glycosaminoglycan analogs having important biological activities.;Description
Journal of Biological Chemistry, 271, 11750-11755; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.Department
The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);Publisher
ElsevierRelationships
The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; https://harc.rpi.edu/;Access
CC BY — Creative Commons Attribution; A full text version is available in DSpace@RPI; Open Access;Collections
The following license files are associated with this item: