Structure and Activity of a Unique Heparin-Derived Hexasaccharide
Author
Linhardt, Robert J.; Rice, K.G.; Merchant, Z.M.; Kim, Y.S.; Lohse, D.L.Other Contributors
Date Issued
1986Subject
Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineeringDegree
Terms of Use
CC BY : this license allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use. Credit must be given to the authors and the original work must be properly cited.; Attribution 3.0 United StatesFull Citation
Structure and Activity of a Unique Heparin-Derived Hexasaccharide, R.J. Linhardt, K.G. Rice, Z.M. Merchant, Y.S. Kim, D.L. Lohse, The Journal of Biological Chemistry, 261, 14448-14454 (1986).Metadata
Show full item recordAbstract
A hexasaccharide representing a major sequence in porcine mucosal heparin has been enzymatically prepared from heparin. Its structure was determined by an integrated approach using chemical, enzymatic, and spectroscopic methods. Two-dimensional 1H homonuclear COSY, C-H correlation NMR, and selective irradiation were used to assign many of the NMR resonances. In addition, new techniques including sulfate determination by ion chromatography and Fourier transform IR and californium plasma desorption mass spectroscopy have been applied, resulting in an unambiguous structural assignment of delta IdoAp2S(1----4)-alpha-D-GlcNp2S6S(1----4)-alpha-L-IdoAp++ +(1----4)-alpha-D-GlcNA cp6S-(1----4)-beta-D-GlcAp(1----4)-alpha-D-GlcNp2S3S6S (where delta IdoA represents 4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid, p represents pyranose, and GlcA and IdoA represent glucuronic and iduronic acid). This hexasaccharide contains a portion of the antithrombin III-binding site and has a Kd of 4 X 10(-5) M. Unlike other small heparin oligosaccharides, which are specific for coagulation factor Xa, it inhibits both factors IIa and Xa equally through antithrombin III. This hexasaccharide may have the unique capacity to act primarily through heparin cofactor II to inhibit thrombin (factor IIa) and shows over half of heparin's heparin cofactor II-mediated anti-factor IIa activity. These studies suggest the occurrence of contiguous binding sites on heparin for Xa, antithrombin III, and heparin cofactor II.;Description
The Journal of Biological Chemistry, 261, 14448-14454; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.Department
The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);Publisher
American Society for Biochemistry and Molecular Biology (ASBMB) and ElsevierRelationships
The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; https://harc.rpi.edu/;Access
CC BY — Creative Commons Attribution; A full text version is available in DSpace@RPI; Open Access;Collections
The following license files are associated with this item: