• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Conformational Analysis of a Dermatan Sulfate - Derived Tetrasaccharide by NMR, Molecular Modeling and Residual Dipolar Couplings

    Author
    Silipo, A.; Zhang, Z.; Cañada, F.J.; Molinaro, A.; Linhardt, Robert J.; Jiménez-Barbero, J.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    View/Open
    CONFORMATIONAL ANALYSIS OF A DERMATAN SULFATE-DERIVED.pdf (3.878Mb)
    Other Contributors
    Date Issued
    2008-01-25
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Conformational Analysis of a Dermatan Sulfate - Derived Tetrasaccharide by NMR, Molecular Modeling and Residual Dipolar Couplings, A. Silipo, Z. Zhang, F. J. Cañada, A. Molinaro, R. J. Linhardt, J. Jiménez-Barbero, ChemBiochem, 9, 240-252, 2008.
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/5194; https://doi.org/10.1002/cbic.200700400
    Abstract
    The solution conformation behavior of a dermatan-derived tetrasaccharide--Delta HexA-(1-->3)-GalNAc4S-beta-(1-->4)-IdoA-alpha-(1-->3)-red-GalNAc4S (S is a sulfate group)--has been explored by means of NMR spectroscopy, especially by NOE-based conformational analysis. The tetrasaccharide was present as four species, two of which are chemically different in the anomeric orientation of the reducing 2-deoxy-2-acetamido-galactose (red-GalNAc) residue, while the other two are the result of different conformations of the iduronic acid (IdoA) unit. The two alpha-beta-interconverting anomers were present in a 0.6:1 ratio. Ring conformations have been defined by analysis of (3)J(H,H) coupling constants and interresidual NOE contacts. Both 2-deoxy-2-acetamido-galactose (GalNAc) residues were found in the (4)C(1) chair conformation, the unsaturated uronic acid (Delta-Hex A) adopts a strongly predominant half-chair (1)H(2) conformation, while the IdoA residue exists either in the (1)C(4) chair or in the (2)S(0) skewed boat geometries, in a 4:1 ratio. There is a moderate flexibility of Phi and Psi torsions as suggested by nuclear Overhauser effects (NOEs), molecular modeling (MM), and molecular dynamics (MD) studies. This was further investigated by residual dipolar couplings (RDCs). One-bond C--H RDCs ((1)D(C,H)) and long-range H-H ((3)D(H,H)) RDCs were measured for the tetrasaccharide in a phage solution and interpreted in combination with restrained MD simulation. The RDC-derived data substantially confirmed the validity of the conformer distribution resulting from the NOE-derived simulations, but allowed an improved definition of the conformational behavior of the oligosaccharides in solution. In summary, the data show a moderate flexibility of the four tetrasaccharide species at the central glycosidic linkage. Differences in the shapes of species with the IdoA in skew and in chair conformations and in the distribution of the sulfate groups have also been highlighted.;
    Description
    ChemBiochem, 9, 240-252; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Publisher
    European Chemical Societies
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; ChemBioChem; https://harc.rpi.edu/;
    Access
    A full text version is available in DSpace@RPI;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV