Author
Laremore, T.N.; Zhang, F.; Linhardt, Robert J.
Other Contributors
Date Issued
2007
Subject
Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
Full Citation
New Ionic Liquid Matrix for Direct UV-MALDI-TOF-MS Analysis of Dermatan Sulfate and Chondroitin Sulfate Oligosaccharides, T.N. Laremore, F. Zhang, R. J. Linhardt, Analytical Chemistry, 79, 1604-1610, 2007.
Abstract
Polyanionic oligosaccharides such as dermatan sulfate (DS) and chondroitin sulfate (CS) exhibit poor ionization efficiencies and tend to undergo thermal fragmentation through the loss of SO(3) under conventional ultraviolet matrix-assisted laser desorption/ionization (UV-MALDI) conditions. A new ionic liquid matrix (ILM), a guanidinium salt of alpha-cyano-4-hydroxycinnamic acid, facilitates direct UV-MALDI mass spectrometric (MS) analysis of underivatized DS and CS oligosaccharides up to a decasaccharide in their common form as sodium salts. The resulting mass spectra show very low extent of fragmentation through an SO(3) loss. The new ILM is suitable for MALDI-MS analysis of mixtures containing oligosaccharides with different numbers of sulfo groups.;
Description
Analytical Chemistry, 79, 1604-1610; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
Publisher
American Chemical Society (ACS)
Relationships
The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; https://harc.rpi.edu/;
Access
A full text version is available in DSpace@RPI;