• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structural Characterization of Glycosaminoglycans from Zebrafish in Different Ages

    Author
    Zhang, Fuming; Zhang, Zhenqing; Thistle, Robert; McKeen, Lindsey; Hosoyama, Saori; Toida, Toshihiko; Linhardt, Robert J.; Page-Mccaw, Patrick
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    View/Open
    STRUCTURAL CHARACTERIZATION OF GLYCOSAMINOGLYCANS FROM ZEBRAFISH.pdf (501.1Kb)
    Other Contributors
    Date Issued
    2009-02-01
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Structural Characterization of Glycosaminoglycans from Zebrafish in Different Ages, F. Zhang, Z. Zhang, R. Thistle, L. McKeen, S. Hosoyama, T. Toida, R. J. Linhardt, P. Page-McCaw, Glycoconjugate Journal, 26, 211-218, 2009.
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/5223; https://doi.org/10.1007/s10719-008-9177-x
    Abstract
    The zebrafish (Danio rerio) is a popular model organism for the study of developmental biology, disease mechanisms, and drug discovery. Glycosaminoglycans (GAGs), located on animal cell membranes and in the extracellular matrix, are important molecules in cellular communication during development, in normal physiology and pathophysiology. Vertebrates commonly contain a variety of GAGs including chondroitin/dermatan sulfates, heparin/heparan sulfate, hyaluronan and keratan sulfate. Zebrafish might represent an excellent experimental organism to study the biological roles of GAGs. A recent study showing the absence of heparan sulfate in adult zebrafish, suggested a more detailed evaluation of the GAGs present in this important model organism needed to be undertaken. This report aimed at examining the structural alterations of different GAGs at the molecular level at different developmental stages. GAGs were isolated and purified from zebrafish in different stages in development ranging from 0.5 days to adult. The content and disaccharide composition of chondroitin sulfate and heparan sulfate were determined using chemical assays, liquid chromotography and mass spectrometry. The presence of HS in adult fish was also confirmed using (1)H-NMR.;
    Description
    Glycoconjugate Journal, 26, 211-218; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Publisher
    Springer
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Glycoconjugate Journal; https://harc.rpi.edu/;
    Access
    A full text version is available in DSpace@RPI;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV