• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mass spectrometry for the characterization of unsulfated chondroitin oligosaccharides from 2-mers to 16-mers. Comparison with hyaluronic acid oligomers

    Author
    Volpi, Nicola; Zhang, Zhenqing; Linhardt, Robert J.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    View/Open
    MASS SPECTROMETRY FOR THE CHARACTERIZATION OF UNSULFATED.pdf (410.2Kb)
    Other Contributors
    Date Issued
    2008-11-30
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Mass spectrometry for the characterization of unsulfated chondroitin oligosaccharides from 2-mers to 16-mers. Comparison with hyaluronic acid oligomers, N. Volpi, Z. Zhang, R. J. Linhardt, Rapid Communications in Mass Spectrometry, 22, 3526-3530, 2008.
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/5228; https://doi.org/10.1002/rcm.3760
    Abstract
    This study reports for the first time the complete liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) and tandem mass spectrometry (MS/MS) analyses performed in negative ion mode of saturated unsulfated chondroitin oligosaccharides up to 16-mers and comparison with hyaluronic acid (HA) oligomers differing only in the nature of the hexosamine residue. MS/MS of the chondroitin disaccharide on the singly charged precursor at m/z 396.1 afforded a glycosidic cleavage C1 product ion at m/z 192.9. In the tetrasaccharide, C2 (m/z 396.0) and C3 (m/z 572.0) product anions were generated by glycosidic cleavage. A C5 [M-2H]2- product ion at m/z 475.1 was generated by the glycosidic cleavage of the hexasaccharide, and a C7 ion (m/z 664.6, charge state of -2) was produced from the octasaccharide. The same fragmentation pattern of deprotonated oligomers was observed for the largest oligosaccharides, from 10- to 16-mers. There has been no previous report of MS/MS spectra for unsulfated chondroitin oligomers of these sizes. Unsulfated saturated chondroitin oligosaccharides with x-mer units and larger than a tetrasaccharide dissociate to almost exclusively form CX-1-type ions. Saturated HA oligomers also afforded the same fragmentation pattern as deprotonated oligomers by ESI-MS and MS/MS analyses. Thus, under the experimental conditions used in the current study, we were unable to distinguish between unsulfated chondroitin and HA.;
    Description
    Rapid Communications in Mass Spectrometry, 22, 3526-3530; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Publisher
    Wiley
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Rapid Communications in Mass Spectrometry; https://harc.rpi.edu/;
    Access
    A full text version is available in DSpace@RPI;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV