• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Signal Amplification of Target Protein on Heparin Glycan Microarray

    Author
    Park, Tae Joon; Lee, Moo Yeal; Dordick, Jonathan S.; Linhardt, Robert J.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    View/Open
    SIGNAL AMPLIFICATION OF TARGET PROTEIN ON HEPARIN GLYCAN.pdf (1.151Mb)
    Other Contributors
    Date Issued
    2008-12-01
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Signal Amplification of Target Protein on Heparin Glycan Microarray, T.-J. Park, M.-Y. Lee, J. S. Dordick, R. J. Linhardt, Analytical Biochemistry, 383, 116–121, 2008.
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/5230; https://doi.org/10.1016/j.ab.2008.07.037
    Abstract
    A heparin glycan chip (HepGlyChip) with a 4800-fold enhanced signal-to-noise ratio as compared with the control without heparin was developed for high-throughput analysis of heparin-protein interactions for new drug development and for screening biological samples in diagnostic applications. As a proof of concept, a heparin glycan microarray was prepared on a poly(styrene-co-maleic anhydride) (PS-MA)-coated glass slide. Heparin was covalently immobilized on poly-l-lysine (PLL) layer with multiple binding sites by sulfo-ethylene glycol bis(succinimidylsuccinate) (sulfo-EGS), increasing the signal-to-noise ratio, minimizing nonspecific binding of target proteins, and resulting in a three-dimensional (3D) structure on the HepGlyChip. This on-chip signal amplification platform was successfully demonstrated by probing the heparin microarray with the highly specific heparin-binding protein antithrombin III (AT III).;
    Description
    Analytical Biochemistry, 383, 116–121; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Publisher
    Elsevier
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Analytical Biochemistry; https://harc.rpi.edu/;
    Access
    A full text version is available in DSpace@RPI;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV