• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Heparin mapping using heparin lyases and the generation of a novel low molecular weight heparin

    Author
    Xiao, Zhongping; Tappen, Britney R.; Ly, Mellisa; Zhao, Wenjing; Canova, Lauren P.; Guan, Huashi; Linhardt, Robert J.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    View/Open
    HEPARIN MAPPING USING HEPARIN LYASES AND THE GENERATION OF A.pdf (1.011Mb)
    Other Contributors
    Date Issued
    2011-01-27
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Heparin mapping using heparin lyases and the generation of a novel low molecular weight heparin, Z. Xiao, B. R. Tappen, M. Ly, W. Zhao, L. P. Canova, H. Guan, R. J. Linhardt, Journal of Medicinal Chemistry, 54, 603–610, 2011. 2011.
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/5241; https://doi.org/10.1021/jm101381k
    Abstract
    Seven pharmaceutical heparins were investigated by oligosaccharide mapping by digestion with heparin lyase 1, 2, or 3, followed by high performance liquid chromatography analysis. The structure of one of the prepared mapping standards, ΔUA-Gal-Gal-Xyl-O-CH(2)CONHCH(2)COOH (where ΔUA is 4-deoxy-α-l-threo-hex-4-eno-pyranosyluronic acid, Gal is β-d-galactpyranose, and Xyl is β-d-xylopyranose) released from the linkage region using either heparin lyase 2 or heparin lyase 3 digestion, is reported for the first time. A size-dependent susceptibility of site cleaved by heparin lyase 3 was also observed. Heparin lyase 3 acts on the undersulfated domains of the heparin chain and does not cleave the linkages within heparin's antithrombin III binding site. Thus, a novel low molecular weight heparin (LMWH) is afforded on heparin lyase 3 digestion of heparin due to this unique substrate specificity, which has anticoagulant activity comparable to that of currently available LMWH.;
    Description
    Journal of Medicinal Chemistry, 54, 603–610; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Publisher
    American Chemical Society (ACS)
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Journal of Medicinal Chemistry; https://harc.rpi.edu/;
    Access
    A full text version is available in DSpace@RPI;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2023  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV