• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Glycosaminoglycans of the porcine central nervous system

    Author
    Liu, Zhenling; Masuko, Sayaka; Solakyildirim, Kemal; Pu, Dennis; Linhardt, Robert J.; Zhang, Fuming
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    View/Open
    GLYCOSAMINOGLYCANS OF THE PORCINE CENTRAL NERVOUS SYSTEM.pdf (1.449Mb)
    Other Contributors
    Date Issued
    2010-11-16
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Glycosaminoglycans of the porcine central nervous system, Z. Liu, S. Masuko, K. Solakyildirim, D. Pu, R. J. Linhardt, F. Zhang, Biochemistry, 49, 9839–9847, 2010.
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/5247; https://doi.org/10.1021/bi101305b
    Abstract
    Glycosaminoglycans (GAG) are known to participate in central nervous system processes such as development, cell migration, and neurite outgrowth. In this paper, we report an initial glycomics study on GAGs from porcine central nervous system. GAGs of the porcine central nervous system, brain and spinal cord, were isolated and purified by defating, proteolysis, anion-exchange chromatography and methanol precipitation. The isolated GAG content in brain was 5-times higher than in spinal cord (0.35 mg/g, compared to 0.07 mg/g dry sample). In both tissues, chondroitin sulfate (CS) and heparan sulfate (HS) were the major and the minor GAG. The average molecular weight of CS from brain and spinal cord was 35.5 and 47.1 kDa, respectively, and HS from brain and spinal cord was 56.9 and 34 kDa, respectively. The disaccharide analysis showed that the composition of CS from brain and spinal cords are similar with uronic acid (1→3) 4-O-sulfo-N-acetylgalactosamine residue corresponding to the major disaccharide unit (CS type-A) along with five minor disaccharide units. The major disaccharides of both brain and spinal cord HS were uronic acid (1→4) N-acetylglucosamine and uronic acid (1→4) 6-O-sulfo-N-sulfoglucosamine but their composition of minor disaccharides differed. Analysis by 1H- and two-dimensional-NMR spectroscopy confirmed these disaccharide analyses and provided the glucuronic/iduronic acid ratio. Finally, both purified CS and HS were biotinylated and immobilized on BIAcore SA biochips. Interactions between these GAGs and fibroblast growth factors (FGF1 and FGF2) and sonic hedgehog (Shh) were investigated by surface plasmon resonance.;
    Description
    Biochemistry, 49, 9839–9847; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Publisher
    American Chemical Society (ACS)
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Biochemistry; https://harc.rpi.edu/;
    Access
    A full text version is available in DSpace@RPI;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV