Show simple item record

dc.contributor.authorWolff, J.
dc.contributor.authorLeach, F.
dc.contributor.authorLaremore, T.
dc.contributor.authorKaplan, D.
dc.contributor.authorEasterling, M.
dc.contributor.authorLinhardt, Robert J.
dc.contributor.authorAmster, J.
dc.date2010
dc.date.accessioned2022-06-23T04:08:43Z
dc.date.available2022-06-23T04:08:43Z
dc.date.issued2010
dc.identifier.citationNegative electron transfer dissociation of glycosaminoglycans, J. Wolff, F. Leach, T. Laremore, D. Kaplan, M. Easterling, R. J. Linhardt, J. Amster, Analytical Chemistry, 82, 3460-3466, 2010.
dc.identifier.urihttps://hdl.handle.net/20.500.13015/5254
dc.identifier.urihttps://doi.org/10.1021/ac100554a
dc.descriptionAnalytical Chemistry, 82, 3460-3466
dc.descriptionNote : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
dc.description.abstractStructural characterization of glycosaminoglycans (GAGs) has been a challenge in the field of mass spectrometry, and the application of electron detachment dissociation (EDD) Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) has shown great promise to GAG oligosaccharide characterization in a single tandem mass spectrometry experiment. In this work, we apply the technique of negative electron transfer dissociation (NETD) to GAGs on a commercial ion trap mass spectrometer. NETD of GAGs, using fluoranthene or xenon as the reagent gas, produces fragmentation very similar to previously observed EDD fragmentation. Using fluoranthene or xenon, both glycosidic and cross-ring cleavages are observed, as well as even- and odd-electron products. The loss of SO3 can be minimized and an increase in cross-ring cleavages is observed if a negatively-charged carboxylate is present during NETD, which can be controlled by the charge state or the addition of sodium. NETD effectively dissociates GAGs up to eight saccharides in length, but the low resolution of the ion trap makes assigning product ions difficult. Similar to EDD, NETD is also able to distinguish the epimers iduronic acid from glucuronic acid in heparan sulfate tetrasaccharides and suggests that a radical intermediate plays an important role in distinguishing these epimers. These results demonstrate that NETD is effective at characterizing GAG oligosaccharides in a single tandem mass spectrometry experiment on a widely available mass spectrometry platform.
dc.languageen_US
dc.language.isoENG
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofThe Linhardt Research Labs Online Collection
dc.relation.ispartofRensselaer Polytechnic Institute, Troy, NY
dc.relation.urihttps://harc.rpi.edu/
dc.subjectBiology
dc.subjectChemistry and chemical biology
dc.subjectChemical and biological engineering
dc.subjectBiomedical engineering
dc.titleNegative electron transfer dissociation of glycosaminoglycans
dc.typeArticle
dcterms.accessRightsA full text version is available in DSpace@RPI
dcterms.isVersionOfhttps://doi.org/10.1021/ac100554a
dc.rights.holderIn Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
dc.creator.identifierhttps://orcid.org/0000-0003-2219-5833
dc.relation.departmentThe Linhardt Research Labs.
dc.relation.departmentThe Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record