• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Engineering of routes to heparin and related polysaccharides

    Author
    Bhaskar, Ujjwal; Sterner, Eric; Hickey, Anne Marie; Onishi, Akihiro; Zhang, Fuming; Dordick, Jonathan S.; Linhardt, Robert J.
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    View/Open
    ENGINEERING OF ROUTES TO HEPARIN AND RELATED POLYSACCHARIDES.pdf (1.781Mb)
    Other Contributors
    Date Issued
    2012-01-01
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Engineering of routes to heparin and related polysaccharides, U. Bhaskar, E. Sterner, A. M. Hickey, A. Onishi, F. Zhang, J. S. Dordick, R.J. Linhardt, Applied Microbiology and Biotechnology, 93, 1–16, 2012.
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/5271; https://doi.org/10.1007/s00253-011-3641-4
    Abstract
    Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines, including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry.;
    Description
    Applied Microbiology and Biotechnology, 93, 1–16; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Publisher
    Springer
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Applied Microbiology and Biotechnology; https://harc.rpi.edu/;
    Access
    A full text version is available in DSpace@RPI;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV