Author
Zhang, Fuming; Yang, Bo; Ly, Mellisa; Solakyildirim, Kemal; Xiao, Zhongping; Wang, Zhenyu; Beaudet, Julie M.; Torelli, Amanda Y.; Dordick, Jonathan S.; Linhardt, Robert J.
Other Contributors
Date Issued
2011-11-01
Subject
Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
Full Citation
Structural characterization of heparins from different commercial sources F. Zhang, B. Yang, M. Ly, K. Solakyildirim, Z. Xiao, Z. Wang, J. M. Beaudet, A. Y. Torelli, J. S. Dordick, R. J. Linhardt, Analytical and Bioanalytical Chemistry, 401, 2793-2803, 2011.
Abstract
Seven commercial heparin active pharmaceutical ingredients and one commercial low molecular weight from different manufacturers were characterized with a view profiling their physicochemical properties. All heparins had similar molecular weight properties as determined by polyacrylamide gel electrophoresis (M(N), 10-11 kDa; M(W), 13-14 kDa; polydispersity (PD), 1.3-1.4) and by size exclusion chromatography (M(N), 14-16 kDa; M (W), 21-25 kDa; PD, 1.4-1.6). one-dimensional (1)H- and (13)C-nuclear magnetic resonance (NMR) evaluation of the heparin samples was performed, and peaks were fully assigned using two-dimensional NMR. The percentage of glucosamine residues with 3-O-sulfo groups and the percentage of N-sulfo groups and N-acetyl groups ranged from 5.8-7.9%, 78-82%, to 13-14%, respectively. There was substantial variability observed in the disaccharide composition, as determined by high performance liquid chromatography (HPLC)-mass spectral analysis of heparin lyase I-III digested heparins. Heparin oligosaccharide mapping was performed using HPLC following separate treatments with heparin lyase I, II, and III. These maps were useful in qualitatively and quantitatively identifying structural differences between these heparins. The binding affinities of these heparins to antithrombin III and thrombin were evaluated by using a surface plasmon resonance competitive binding assay. This study provides the physicochemical and activity characterization necessary for the appropriate design and synthesis of a generic bioengineered heparin.;
Description
Analytical and Bioanalytical Chemistry, 401, 2793-2803; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
Publisher
Springer
Relationships
The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Analytical and Bioanalytical Chemistry; https://harc.rpi.edu/;
Access
A full text version is available in DSpace@RPI;