Interactions between heparin/GAGs and nattokinase

Authors
Zhang, Fuming
Zhang, Jianhua
Linhardt, Robert J.
ORCID
https://orcid.org/0000-0003-2219-5833
Loading...
Thumbnail Image
Other Contributors
Issue Date
2015-12-01
Keywords
Biology , Chemistry and chemical biology , Chemical and biological engineering , Biomedical engineering
Degree
Terms of Use
In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/
Full Citation
Interactions between heparin/GAGs and nattokinase F. Zhang, J. Zhang, R. J. Linhardt, Glycoconjugate Journal, 32, 695–702, 2015.
Abstract
Nattokinase (NK) is a serine protease extracted from a traditional Japanese food called natto. Due to its strong fibrinolytic and thrombolytic activity, NK is regarded as a valuable dietary supplement or nutraceutical for the oral thrombolytic therapy. In addition, NK has been investigated for some other medical applications including treatment of hypertension, Alzheimer's disease, and vitreoretinal disorders. The most widely used clinical anticoagulants are heparin and low molecular weight heparins. The interactions between heparin and proteins modulate diverse patho-physiological processes and heparin modifies the activity of serine proteases. Indeed, heparin plays important roles in almost all of NK's potential therapeutically applications. The current report relies on surface plasmon resonance spectroscopy to examine NK interacting with heparin as well as other glycosaminoglycans (GAGs). These studies showed that NK is a heparin binding protein with an affinity of ~250 nM. Examination with differently sized heparin oligosaccharides indicated that the interaction between NK and heparin is chain-length dependent and the minimum size for heparin binding is a hexasaccharide. Studies using chemically modified heparin showed the 6-O-sulfo as well as the N-sulfo groups but not the 2-O-sulfo groups within heparin, are essential for heparin's interaction with NK. Other GAGs (including HS, DS, and CSE) displayed modest binding affinity to NK. NK also interfered with other heparin-protein interactions, including heparin's interaction with antithrombin and fibroblast growth factors.
Description
Glycoconjugate Journal, 32, 695–702
Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
Department
The Linhardt Research Labs.
The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS)
Publisher
Springer
Relationships
The Linhardt Research Labs Online Collection
Rensselaer Polytechnic Institute, Troy, NY
Glycoconjugate Journal
https://harc.rpi.edu/
Access
A full text version is available in DSpace@RPI