• Login
    View Item 
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    •   DSpace@RPI Home
    • The Linhardt Research Labs
    • Linhardt Research Labs Papers
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Preparation of low molecular weight heparin using an ultrasound-assisted Fenton-system

    Author
    Zhi, Zijian; Li, Junhui; Chen, Jianle; Li, Shan; Cheng, Huan; Liu, Donghong; Ye, Xingqian; Linhardt, Robert J.; Chen, Shiguo
    ORCID
    https://orcid.org/0000-0003-2219-5833
    Thumbnail
    View/Open
    PREPARATION OF LOW MOLECULAR WEIGHT HEPARIN USING AN.pdf (1.324Mb)
    Other Contributors
    Date Issued
    2019-04-01
    Subject
    Biology; Chemistry and chemical biology; Chemical and biological engineering; Biomedical engineering
    Degree
    Terms of Use
    In Copyright : this Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). https://rightsstatements.org/page/InC/1.0/;
    Full Citation
    Preparation of low molecular weight heparin using an ultrasound-assisted Fenton-system, Z. Zhi, J. Li, J. Chen, S. Li, H. Cheng, D. Liu, X. Ye, R. J. Linhardt, S. Chen, Ultrasonics Sonochemistry, 52, 184–192, 2019.
    Metadata
    Show full item record
    URI
    https://hdl.handle.net/20.500.13015/5368; https://doi.org/10.1016/j.ultsonch.2018.11.016
    Abstract
    Heparin, a high-molecular weight acidic polysaccharide, has raised much interest in the field of biomedical research due to its multiple bio-functions. The anticoagulant application of heparin in routine clinical practice, however, has been limited as the large molecular size of heparin can reduce its subcutaneous bioavailability and lead to severe adverse consequences such as thrombocytopenia. Here, we report a highly efficient and convenient method to depolymerize high-molecular weight, unfractionated heparin (UFH), into low molecular weight heparin (LMWH) by combining physical ultrasonic treatment with the chemical Fenton reaction, referred to as sono-Fenton. We found that this combination treatment synergistically degraded UFH into a LMWH of 4.87 kDa within 20 min. We characterized the mechanism of sono-Fenton heparin degradation through multiple approaches, including HPLC-SAX, disaccharide composition, FT-IR, NMR and top-down analysis, and found that the uronic acid residue in heparin was the most susceptible site attacked by OH radicals produced in the sono-Fenton process. Importantly, the LMWH prepared by this method had significantly higher anticoagulant activity than UFH and other LMWHs. This approach represents an effective method to produce heparin with improved activity and should be potentially useful for heparin production in the pharmaceutical industry.;
    Description
    Ultrasonics Sonochemistry, 52, 184–192; Note : if this item contains full text it may be a preprint, author manuscript, or a Gold OA copy that permits redistribution with a license such as CC BY. The final version is available through the publisher’s platform.
    Department
    The Linhardt Research Labs.; The Shirley Ann Jackson, Ph.D. Center for Biotechnology and Interdisciplinary Studies (CBIS);
    Publisher
    Elsevier
    Relationships
    The Linhardt Research Labs Online Collection; Rensselaer Polytechnic Institute, Troy, NY; Ultrasonics Sonochemistry; https://harc.rpi.edu/;
    Access
    Open Access; A full text version is available in DSpace@RPI;
    Collections
    • Linhardt Research Labs Papers

    Browse

    All of DSpace@RPICommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2022  DuraSpace
    Contact Us | Send Feedback
    DSpace Express is a service operated by 
    Atmire NV